Contents

Contributing Authors x
Foreword xvii
Preface xviii
Introduction xix

PART II: FOREFOOT SURGERY

SECTION I: Nail Surgery

11 Nail Surgery 109
 TIMOTHY W. CRISLIP AND JEFFREY S. BOBERG

SECTION II: Morton Neuroma

12 Interdigital Neuroma (Morton Neuroma) 117
 JEFFREY S. BOBERG AND CAMERON L. EILTS

SECTION III: Digital Deformity

13 Lesser Digital Deformities:
 Etiology, Procedural Selection,
 and Arthroplasty 124
 JEFFREY S. BOBERG AND JASON J. WILLIS

14 Digital Surgery: Metatarsophalangeal
 Joint Release and Proximal
 Interphalangeal Joint Arthrodesis 129
 ANDREA D. CASS AND JOHN A. RUCH

15 Flail Toe with Bone Graft 140
 KIERAN T. MAHAN

16 Flexor Digitorum Longus Tendon
 Transfer 145
 ANNETTE D. FILIATRAULT, JOHN A. RUCH,
 AND STEVEN A. WEISKOPF

17 Congenital Overlapping Fifth Toe
 Deformity 154
 MICHAEL S. DOWNEY AND JON M. WILSON, JR

18 Surgical Repair of Fifth Digit
 Deformities 165
 THOMAS F. SMITH, CARL A. KIHM,
 AND KEITH D. PFEIFER

VOLUME ONE

PART I: BASICS

SECTION I: Technical Principles

1 Instrumentation 3
 D. SCOT MALAY AND ROBYN WINNER

2 Biomaterials: Metals and Other
 Nonabsorbables 15
 SEAN T. GRAMBERT AND JEFFREY C. CHRISTENSEN

3 Absorbable Biomaterials 24
 ADAM S. LANDSMAN

4 Suture Materials and Needles 37
 DANNY R. FIJALKOWSKI

SECTION II: Perioperative
 Management

5 Perioperative Evaluation 54
 LOPA DALMIA AND ANDREA D. CASS

6 Local Anesthetics 63
 MITZI L. WILLIAMS AND DONALD R. GREEN

7 General and Regional Anesthesia ... 73
 CONSTANTINE S. KOKENES, JAY D. RYAN,
 ALLISON J.A. MENKE, AND DONALD R. POWELL

8 Perioperative Pain Management 83
 ANDREW J. MEYR AND JOHN S. STEINBERG

9 Perioperative Prophylaxis for
 Deep Vein Thrombosis 97
 JAMES H. MORGAN, JR

10 Perioperative Antibiotics 101
 AMANDA MESZAROS
SECTION IV: Lesser Metatarsophalangeal Joint Deformities

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Plantar Plate Repair of the Second Metatarsophalangeal Joint</td>
<td>187</td>
</tr>
<tr>
<td>20</td>
<td>Transverse Plane Digital Deformities</td>
<td>202</td>
</tr>
<tr>
<td>21</td>
<td>The Weil Lesser Metatarsal Osteotomy</td>
<td>224</td>
</tr>
<tr>
<td>22</td>
<td>Central Rays: V Osteotomy, DFWO, Condylectomy</td>
<td>229</td>
</tr>
<tr>
<td>23</td>
<td>Tailor’s Bunion Deformity</td>
<td>235</td>
</tr>
</tbody>
</table>

PART III: FIRST RAY, HALLUX ABDUCTO VALGUS, AND RELATED DEFORMITIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Evaluation and Procedural Selection in Hallux Valgus Surgery</td>
<td>245</td>
</tr>
<tr>
<td>25</td>
<td>Anatomic Dissection of the First Metatarsophalangeal Joint for Hallux Valgus Surgery</td>
<td>250</td>
</tr>
<tr>
<td>26</td>
<td>Hallux Osteotomies</td>
<td>260</td>
</tr>
<tr>
<td>27</td>
<td>Distal Metaphyseal Osteotomies in Hallux Abducto Valgus Surgery</td>
<td>279</td>
</tr>
<tr>
<td>28</td>
<td>Proximal Osteotomies of the First Metatarsal</td>
<td>290</td>
</tr>
<tr>
<td>29</td>
<td>Offset-V Osteotomy of the First Metatarsal Shaft in Hallux Abducto Valgus</td>
<td>302</td>
</tr>
<tr>
<td>30</td>
<td>Z-Scarf Osteotomy</td>
<td>314</td>
</tr>
</tbody>
</table>

PART IV: REARFOOT

SECTION I: Midfoot and Heel Surgery

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Lapidus Bunionectomy: First Metatarsal–Cuneiform Arthrodesis</td>
<td>322</td>
</tr>
<tr>
<td>32</td>
<td>Juvenile Hallux Abducto Valgus Deformity</td>
<td>331</td>
</tr>
<tr>
<td>33</td>
<td>Joint Salvage and Preservation Surgical Techniques for Hallux Limitus</td>
<td>343</td>
</tr>
<tr>
<td>34</td>
<td>First Metatarsophalangeal Joint Arthroplasty</td>
<td>362</td>
</tr>
<tr>
<td>35</td>
<td>First Metatarsophalangeal Joint Arthrodesis</td>
<td>400</td>
</tr>
<tr>
<td>36</td>
<td>Complications in Hallux Abducto Valgus Surgery (Excluding Hallux Varus)</td>
<td>417</td>
</tr>
<tr>
<td>37</td>
<td>Hallux Varus</td>
<td>461</td>
</tr>
</tbody>
</table>

SECTION II: Hallux Valgus and Related Deformities

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Common Pedal Prominences</td>
<td>471</td>
</tr>
<tr>
<td>39</td>
<td>Plantar Heel</td>
<td>494</td>
</tr>
<tr>
<td>40</td>
<td>The Distal Tarsal Tunnel: First Branch of the Lateral Plantar Nerve Release</td>
<td>505</td>
</tr>
<tr>
<td>41</td>
<td>Plantar Foot Surgery</td>
<td>513</td>
</tr>
<tr>
<td>42</td>
<td>Pes Cavus Surgery</td>
<td>525</td>
</tr>
</tbody>
</table>
SECTION II: Valgus Foot Deformity

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Ankle Equinus</td>
<td>541</td>
</tr>
<tr>
<td>44</td>
<td>Flexible Valgus Deformity</td>
<td>585</td>
</tr>
<tr>
<td>45</td>
<td>Tarsal Coalition</td>
<td>598</td>
</tr>
<tr>
<td>46</td>
<td>Posterior Tibial Tendon Dysfunction</td>
<td>636</td>
</tr>
<tr>
<td>47</td>
<td>Medial Column Fusion</td>
<td>670</td>
</tr>
<tr>
<td>48</td>
<td>Arthroereisis</td>
<td>675</td>
</tr>
</tbody>
</table>

PART V: ANKLE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Os Trigonum Surgery</td>
<td>691</td>
</tr>
<tr>
<td>50</td>
<td>Acute Ankle Conditions</td>
<td>702</td>
</tr>
<tr>
<td>51</td>
<td>Old Syndesmotic Injuries</td>
<td>710</td>
</tr>
<tr>
<td>52</td>
<td>Ankle Replacement Arthroplasty</td>
<td>717</td>
</tr>
<tr>
<td>53</td>
<td>Arthroscopy of the Ankle and Foot</td>
<td>757</td>
</tr>
<tr>
<td>54</td>
<td>Osteochondroses of the Foot and Ankle</td>
<td>780</td>
</tr>
</tbody>
</table>

PART VI: MIDFOOT JOINT ARTHRODESIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Principles of Arthrodesis</td>
<td>803</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Tarsometatarsal Arthrodesis</td>
<td>810</td>
</tr>
<tr>
<td>57</td>
<td>Trepheine Arthrodesis at the Midfoot</td>
<td>820</td>
</tr>
<tr>
<td>58</td>
<td>Triple Arthrodesis</td>
<td>824</td>
</tr>
<tr>
<td>59</td>
<td>Subtalar Joint Arthrodesis</td>
<td>843</td>
</tr>
<tr>
<td>60</td>
<td>Talonavicular Fusions</td>
<td>851</td>
</tr>
<tr>
<td>61</td>
<td>Pantalar Arthrodesis</td>
<td>855</td>
</tr>
</tbody>
</table>

VOLUME TWO

PART VII: SPECIAL SURGERY: CONDITIONS

SECTION I: Rheumatoid Foot and Ankle

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>Rheumatoid Rearfoot</td>
<td>863</td>
</tr>
<tr>
<td>63</td>
<td>Pan Metatarsal Head Resection</td>
<td>876</td>
</tr>
</tbody>
</table>

SECTION II: Neurologic Disorders

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>Spasticity and Paralytic Disorders</td>
<td>884</td>
</tr>
<tr>
<td>65</td>
<td>Charcot-Marie-Tooth Disease</td>
<td>892</td>
</tr>
</tbody>
</table>

SECTION III: Peripheral Nerve Surgery

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>General Entrapment Syndromes</td>
<td>912</td>
</tr>
<tr>
<td>67</td>
<td>Tarsal Tunnel Syndrome</td>
<td>934</td>
</tr>
</tbody>
</table>
68 Complex Regional Pain Syndromes and Related Disorders 950
 JEFFREY C. CHRISTENSEN

SECTION IV: Diabetic Foot

69 Evaluation and Management of the Diabetic Foot Wound 986
 JOHN S. STEINBERG AND PAUL J. KIM

70 Charcot Foot and Ankle Deformity 1008
 THOMAS M. ZGONIS, JOHN J. STAPLETON, AND THOMAS S. ROUKIS

71 Amputations .. 1022
 ROBERT P. TAYLOR, JAMES L. BOUCHARD, AND LINNIE V. RABJOHN

SECTION V: Congenital Deformities

72 Brachymetatarsia 1036
 MICHELLE L. BUTTERWORTH AND DENNIS E. MARTIN

73 Metatarsus Adductus and Allied Disorders 1056
 PATRICK S. AGNEW

74 Clubfoot ... 1079
 LUKE D. CICCHINELLI, DAVID J. GRANGER, TODD R. GUNZY, TODD B. HADDON, AND JORGE G. PENAGOS VASQUEZ

75 Congenital Digital Deformities... 1097
 75.1 Polydactyly 1097
 ANNETTE D. FILIATRAULT
 75.2 Macrodactyly 1106
 THOMAS A. BROSKEY II
 75.3 Ectrodactyly 1109
 CORNELIUS M. DONOHUE
 75.4 Syndactyly 1117
 CARL R. WAGREICH, RENATO J. GIORGINI, AND TARA L. GIORGINI

PART VIII: SPECIAL SURGERY: SOFT TISSUE

76 Principles of Muscle–Tendon Surgery and Tendon Transfers ... 1127
 STEPHEN J. MILLER AND MACK JAY GROVES IV

77 Peroneal Tendon Disorders 1165
 LAWRENCE A. DIDOMENICO AND MICHELLE C. ANANIA

78 Achilles Tendon Disorders 1181
 JAMES L. THOMAS

79 Plastic and Reconstructive Surgery 1193
 TOD R. STORM AND MICHAEL S. LEE

80 Bone Anchors 1222
 THOMAS A. BROSKEY II, MICHAEL C. MCGlamry, AND MITZI L. WILLIAMS

81 Interpositional Arthroplasty of the First Metatarsophalangeal Joint 1231
 CHRISTOPHER F. HYER AND JAYMES D. GRANATA

PART IX: SPECIAL SURGERY: MISCELLANEOUS TOPICS

83 External Fixation of Rearfoot and Ankle Arthrodeses 1241
 BRADLEY M. LAMM

84 Puncture Wounds 1254
 STEPHEN V. COREY AND MICHELLE L. BUTTERWORTH

85 Lower Extremity Infections 1267
 MARK A. KOSINSKI AND WARREN S. JOSEPH

86 Osteomyelitis 1287
 LAWRENCE M. OLOFF AND GEOFFREY S. HEARD

87 Nonunions 1309
 STEPHAN J. LAPOINTE

88 Orthobiologics 1322
 D. SCOT MALAY AND WILLIAM HARRIS IV

89 Electrical and Mechanical Bone Growth Stimulation 1333
 MICHAEL S. DOWNEY AND WEN-YIN CHOI WANG

90 Nonosseous Injuries 1350
 KEITH D. COOK

PART X: TUMORS

91 Skin Lesions 1363
 D. SCOT MALAY AND MARIJA UGRINICH

92 Soft Tissue Masses 1387
 MICHAEL S. DOWNEY AND CHRISTA M. GREDELEIN
93 Bone Tumors of the Foot and Ankle 1413
LAWRENCE S. OSHER, BRYAN D. CALDWELL, AND HILAREE B. MILLIRON

94 Surgical Management of Bone Tumors in the Foot and Ankle .. 1474
HILAREE B. MILLIRON, JOSEPH A. FAVAZZO, AND B. HUDSON BERREY

95 Plantar Fibromatosis 1486
MICHAEL S. DOWNEY AND RANDALL J. CONTENTO

PART XI: TRAUMA

SECTION I: Acute Trauma

96 Open Fractures 1499
MARK A. HARDY AND JORDAN P. GROSSMAN

97 Complex Soft Tissue Injuries: Degloving and Soft Tissue Loss Injuries 1508
RYAN H. FITZGERALD AND JOHN S. STEINBERG

98 Complications of Internal Fixation 1523
JOHN V. VANORE AND WILLIAM G. MONTROSS

99 Trauma to the Nail and Associated Structures 1535
D. SCOT MALAY AND ROBYN WINNER

100 Management of Acute and Chronic Tendon Injury 1549
RYAN H. FITZGERALD

101 Achilles Tendon Trauma 1580
ALAN NG AND KEITH L. JACOBSON

102 Dislocations of the Foot and Ankle 1600
GRAHAM A. HAMILTON, LAWRENCE A. FORD, AND JOHANNA-MARIE RICHIE

103 Digital and Sesamoid Fractures 1629
MICHAEL S. DOWNEY AND GRETCHEN A. LAWRENCE

104 Metatarsal Fractures 1646
MICHAEL S. LEE AND LINDA HO

105 Midfoot Fractures 1662
TRAVIS A. MOTLEY AND BRIAN B. CARPENTER

106 Tarsometatarsal (Lisfranc) Joint Dislocation 1677
LAWRENCE A. DI DOMENICO AND DAWN Y. STEIN

107 Calcaneal Fractures 1685
MEAGAN M. JENNINGS AND JOHN M. SCHUBERTH

108 Talar Fractures 1707
JOHN M. SCHUBERTH, SHANNON M. RUSH, AND MEAGAN M. JENNINGS

109 Ankle Fractures 1739
LAWRENCE M. FALLAT, THOMAS J. MERRILL, ZEESHAN S. HUSAIN, AND KITTRA T. OWENS

110 Pilon Fractures 1765
GEORGE S. GUMANN AND JUSTIN J. FLEMING

111 Pediatric Foot and Ankle Fractures 1786
EDWIN J. HARRIS

SECTION II: Repair of Posttraumatic Injuries

112 Neglected Calcaneal Fractures 1835
GEORGE T. LIU

113 Ankle Malunions 1849
BRADLEY M. LAMM AND JOHN E. HERZENBERG

114 Supramalleolar Osteotomy 1874
SHANNON M. RUSH, AND JOHN M. SCHUBERTH

115 Talar Avascular Necrosis 1890
CHRISTOPHER F. HYER AND WILLIAM T. DiCARBO

116 Lisfranc Injuries 1914
GEORGE F. WALLACE

117 Fibular Lengthening 1924
BYRON L. HUTCHINSON

Index 1929
Contributing Authors

Patrick S. Agnew, DPM, FACFAS, FACFAP
Founder, Coastal Podiatry Group
Virginia Beach, Virginia
Past President, American College of Foot and Ankle Pediatrics
Director, Pediatric Education
Eastern Virginia Medical School
Norfolk, Virginia

Michelle C. Anania, DPM, FACFAS
Private Practice
Ankle and Foot Care Centers
Youngstown, Ohio

Alan S. Banks, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Village Podiatry Centers
Tucker, Georgia

Gary R. Bauer, DPM
Associate Professor Emeritus
Department of Surgery
Temple University School of Podiatric Medicine
Philadelphia, Pennsylvania

B. Hudson Berrey, MD, FACS
Professor, Department of Orthopedic Surgery
Chief, Sarcoma and Musculoskeletal Oncology
University of Florida Health Science Center
Jacksonville, Florida

Jeffrey S. Boberg, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
St. Louis, Missouri

James L. Bouchard, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Lawrenceville, Georgia

Thomas A. Broaky II, DPM, FACFAS
Faculty
The Podiatry Institute
Attending Surgeon
DrKals Medical Center
Decatur, Georgia
Private Practice
Oakwood, Georgia

Michelle L. Butterworth, DPM, FACFAS
Affiliate Member
The Podiatry Institute
Decatur, Georgia
Private Practice
Pee Dee Foot Clinic
Kingstree, South Carolina

Bryan D. Caldwell, DPM, MS
Professor and Dean
Clinical Education and Operations
Kent State University College of Podiatric Medicine
Independence, Ohio

Craig A. Camasta, DPM, FACFAS, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
St. Joseph’s Hospital
Atlanta, Georgia

Brian B. Carpenter, DPM, FACFAS
Associate Professor
Department of Orthopedics
University of North Texas Health Science Center
Fort Worth, Texas

Andrea D. Cass, DPM, AACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Smyrna, Georgia

Alan R. Catanzariti, DPM, FACFAS
Affiliate Member
The Podiatry Institute
Decatur, Georgia
The Western Pennsylvania Hospital
Philadelphia, Pennsylvania

Thomas J. Chang, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Clinical Professor and Past Chairman
Department of Podiatric Surgery
Samuel Merritt School of Podiatric Medicine
Redwood Orthopedic Surgery Associates
Santa Rosa, California

Wen-Yin Choi Wang, DPM, AACFAS
East Bay Physicians Medical Group
Department of Podiatry
Advanced Wound Care Center
Sutter Delta Medical Center
Antioch, California

Jeffrey C. Christensen, DPM, FACFAS
President and Founder
Ankle and Foot Clinics Northwest
Past Section Chairman and Attending Surgeon
Department of Orthopedics, Podiatric Section
Sweden Medical Center
Seattle, Washington

Luke D. Cicchinelli, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
East Valley Foot and Ankle Specialists
Mesa, Arizona

Annalisa Y. Co, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Sacramento, California

Randall J. Contento, DPM, AACFAS
Private Practice
Central Ohio Podiatry Group
Westerville, Ohio
Contributing Authors

Keith D. Cook, DPM, FACFAS
Director, Podiatric Medical Education
University Hospital
University of Medicine and Dentistry of New Jersey
Newark, New Jersey

Stephen V. Corey, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Pee Dee Foot Clinic
Kingstree, South Carolina

Timothy W. Crislip, DPM
Private Practice
Columbia Orthopaedic Group
Columbia, Missouri

Lopa Dalmia, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Associate Physician, Podiatric Surgery
University of California Davis Health System
Citrus Heights, California

Damien M. Dauphiné, DPM, FACFAS, FAENS, FACCWS, CWS-P
Medical Director
Center for Wound Healing and Hyperbaric Medicine
North Texas Hospital
Denton, Texas

William T. DeCarbo, DPM, AACFAS
Fellowship Trained Foot and Ankle Surgeon
Faculty
Mountain Valley Foot and Ankle Reconstruction Fellowship
The Orthopedic Group
Pittsburgh, Pennsylvania

Alison M. DeWaters, DPM
Private Practice
Affiliated Foot and Ankle Center
Howell, New Jersey

Lawrence A. DiDomenico, DPM, FACFAS
Adjunct Professor
Ohio College of Podiatric Medicine
Visiting Professor
Northeast Ohio Medical University
Section Chief, Podiatric Medicine and Surgery
St. Elizabeth’s Hospital
Director, Reconstructive Rearfoot and Ankle Surgical Fellowship
Ankle and Foot Care Centers
Youngstown, Ohio

Cornelius M. Donohue, DPM
Medical Director, Comprehensive Wound Healing Center
Roxborough Memorial Hospital
Philadelphia, Pennsylvania

Leslie B. Dowling, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Waycross, Georgia

Michael S. Downey, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Clinical Professor and Former Chairman, Department of Surgery
Temple University School of Podiatric Medicine
Chief, Division of Podiatric Surgery
Penn Presbyterian Medical Center
Private Practice
Ankle and Foot Medical Centers of the Delaware Valley
Philadelphia, Pennsylvania

Jonnica S. Dozier, DPM
Staff Podiatrist
Carl Vinson Veterans Administration Medical Center
Dublin, Georgia

Sean Patrick Dunn, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Attending Surgeon
DeKalb Medical Center
Decatur, Georgia
Staff Physician
Northwest Georgia Medical Center
Gainesville, Georgia
Private Practice
Oakwood, Georgia

Cameron L. Eilts, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Sports Medicine Atlantic Orthopedics
Portsmouth, New Hampshire

Lawrence M. Fallat, DPM, FACFAS
Clinical Assistant Professor
Department of Family Practice
Wayne State School of Medicine
Director, Podiatric Surgical Residency
Section Leader
Podiatric Department of Surgery
Oakwood Hospital
Taylor, Michigan

Joseph A. Favazzo, DPM
Assistant Professor
Department of Surgery
Ohio College of Podiatric Medicine
Private Practice
 Twinsburg, Ohio

Danny R. Fijalkowski, DPM
Center for Podiatric Medicine and Surgery
Beloit Community Hospital, a Division of Wheeling Hospital
Bellaire, Ohio

Annette D. Filiatrault, DPM, MS, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Atlanta, Georgia

William D. Fishco, DPM, MS, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Teaching Faculty
Maricopa Medical Center
Private Practice
Anthem, Arizona

Ryan H. Fitzgerald, DPM, AACFAS
Private Practice
Hess Orthopaedics and Sports Medicine
Harrisonburg, Pennsylvania

K. Paul Flanigan, DPM, FACFAS
Private Practice
Portland Foot and Ankle
Portland, Maine

Justin J. Fleming, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Chief, Foot and Ankle Service
Muscle, Bone and Joint Center
Director, Foot and Ankle Training
Aria Health System
Northwest Orthopedic Specialists
Philadelphia, Pennsylvania

Lawrence A. Ford, DPM, FACFAS
Assistant Sub-Chief, Department of Orthopaedics and Podiatric Surgery
Kaiser Permanente Program Director
Kaiser San Francisco Bay Area Foot and Ankle Residency
Oakland, California
Contributing Authors

Renato J. Giorgini, DPM, FACFAS, FASPS, DABPS, DABPO
Section Chief, Podiatric Surgery
Director, Podiatric Medical Education
Good Samaritan Medical Center
Professor, Division Surgical Sciences
New York College of Podiatric Medicine
Lindenhurst, New York

Tara L. Giorgini, DPM, MD
Faculty
The Podiatry Institute
Decatur, Georgia
Casa di Cura Quisisana
Rome, Italy

Robert M. Goecker, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Chief, Podiatric Foot and Ankle Surgery
Sarasota Memorial Hospital
Private Practice
Sarasota, Florida

Sean T. Grambart, DPM, FACFAS
Carle Physician Group
Carle Foundation Hospital
Clinical Instructor University of Illinois
School of Medicine
Champaign, Illinois

Jaymes D. Granata, MD
Private Practice
Lewis Center, Ohio

David J. Granger, DPM, FACFAS
Orthopaedic and Spine Specialists
York, Pennsylvania

Christa M. Gredlein, DPM, FACFAS
Private Practice
Baltimore, Maryland

Donald R. Green, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Residency Director
Scripps Mercy Kaiser Podiatric Residency Program
San Diego, California
Clinical Professor
California School of Podiatric Medicine
Oakland, California

Jordan P. Grossman, DPM, FACFAS
Affiliate Member
The Podiatry Institute
Decatur, Georgia
Private Practice
Akron, Ohio

Mack Jay Groves IV, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
St. Tammany Parish Hospital
Covington, Louisiana

Charles J. Gudas, DPM, FACFAS
Private Practice
Charleston, South Carolina

George S. Gumann, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Orthopedic Clinic
Martin Army Hospital
Fort Benning, Georgia

Todd R. Gunzy, DPM, FACFAS
Affiliate Member
The Podiatry Institute
Decatur, Georgia
Director, Pediatric Foot and Ankle Medical Mission Program
Private Practice
Mesa, Arizona

Todd B. Haddon, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Mesa, Arizona

Patrick B. Hall, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Bone and Joint Clinic of Baton Rouge
Baton Rouge, Louisiana

Graham A. Hamilton, DPM, FACFAS
Attending Surgeon
Department of Orthopedics and Podiatric Surgery
Kaiser San Francisco Bay Area Foot and Ankle Residency Program
Antioch, California

Mark A. Hardy, DPM, FACFAS
Staff
Ohio Permanente Medical Group, Inc.
Director, Cleveland Clinic Kaiser Permanente Foot and Ankle Residency
Cleveland, Ohio

Edwin J. Harris, DPM, FACFAS
Clinical Professor, Orthopaedics and Rehabilitation
Loyola University Chicago, Stritch School of Medicine
Chicago, Illinois

William Harris IV, DPM, AACFAS
Private Practice
Lancaster, South Carolina

Geoffrey S. Heard, DPM
Chairman, Podiatry Department
Sequoia Hospital
Redwood City, California
Private Practice
Belmont, California

John E. Herzenberg, MD, FRCSC
Director, Pediatric Orthopedics
Director, International Center for Limb Lengthening
Director, Limb Reconstruction Fellowship Program
Rubin Institute for Advanced Orthopedics
Sinai Hospital of Baltimore
Clinical Professor, Department of Orthopaedics
University of Maryland School of Medicine
Baltimore, Maryland

Gina A. Hild, DPM
PGY III
Kaiser Permanente, Cleveland Clinic Foundation
Cleveland, Ohio

Linda Ho, DPM
Private Practice
Loma Linda, California

Claire A. Hollstrom, DPM
Diplomate, American Board of Podiatric Surgery
Private Practice
Ankle and Foot Center of Georgia
LaGrange, Georgia

Jacob A. Hord, DPM, AACFAS
Faculty
Jewish Hospital Podiatry Residency Program
Louisville, Kentucky
Private Practice
Shelbyville, Kentucky

Zeeshan S. Husain, DPM, FACFAS
Assistant Residency Director
Podiatric Medicine and Surgery Residency
Detroit Medical Center
Detroit, Michigan

Byron L. Hutchinson, DPM, FACFAS
Program Director, Foot and Ankle Institute
St. Francis Hospital
Federal Way, Washington
Private Practice
Burien, Washington
Christopher F. Hyer, DPM, MS, FACFAS
Fellowship Co-Director
Advanced Foot and Ankle Surgical Fellowship
Orthopedic Foot and Ankle Center
Westerville, Ohio

Keith L. Jacobson, DPM, FACFAS
Committee Member
Highlands-Presbyterian St. Luke’s Residency Program
Advanced Orthopedic and Sports Medicine Specialists
Denver, Colorado

Meagan M. Jennings, DPM, FACFAS
Department of Orthopedics and Podiatry
Palo Alto Medical Foundation
Chief of Podiatry
El Camino Hospital
Mountain View, California

A. Louis Jimenez, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Program Director, Atlanta VAMC Podiatric Residency Program
Past President, American College Foot and Ankle Surgeons
Private Practice
Gwinnett Foot, Ankle Leg Centers
Snellville, Georgia

Shine John, DPM, ACFAS
Foot Specialists
Cedar Park, Texas

Warren S. Joseph, DPM, FIDSA
Consultant
Lower Extremity Infectious Diseases
Roxborough Memorial Hospital
Philadelphia, Pennsylvania

Molly A. Judge, DPM, FACFAS
Director, Publications and Research Podiatric Residency Program
Cleveland Clinic Foundation–Kaiser Permanente Foundation
Cleveland, Ohio
Adjunct Faculty
Ohio University and Colleges of Podiatric Medicine
Faculty
Graduate Medical Education
Mercy Health Partners
Private Practice
Toledo, Ohio

Carl A. Kihm, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Douglasville, Georgia

Paul J. Kim, DPM, FACFAS
Associate Professor, Department of Plastic Surgery
Division of Wound Healing and Hyperbaric Medicine
Georgetown University Hospital
Washington, District of Columbia

Tracy L. Klimaz, DPM, ACFAS
Private Practice
Virginia Beach, Virginia

Constantine S. Kokenes, MD
Department of Anesthesiology
DeKalb Medical Center
Decatur, Georgia

Mark A. Kosinski, DPM, FIDSA
Professor, Department of Medical Sciences
New York College of Podiatric Medicine
New York, New York
Instructor, Department of Surgery
New York Medical College
Valhalla, New York

Bradley M. Lamm, DPM, FACFAS
Head of Foot and Ankle Surgery
International Center for Limb Lengthening
Director, Foot and Ankle Deformity Correction Fellowship
Rubin Institute for Advanced Orthopedics
Sinai Hospital
Baltimore, Maryland

Adam S. Landsman, DPM, PhD, FACFAS
Assistant Professor of Surgery
Harvard Medical School
Chief, Division of Podiatric Surgery
Cambridge Health Alliance
Cambridge, Massachusetts

Stephan J. LaPointe, DPM, PhD, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Rome, Georgia

Gretchen A. Lawrence, DPM, ACFAS
Private Practice
Wayneville, North Carolina

Michael S. Lee, DPM, FACFAS
Adjunct Clinical Professor
Des Moines University
Past President
American College of Foot and Ankle Surgeons
Private Practice
Capital Orthopaedics and Sports Medicine, PC
Clive, Iowa

George T. Liu, DPM, FACFAS
Assistant Professor
Department of Orthopaedic Surgery
University of Texas Southwestern Medical Center
Parkland Memorial Hospital Level I Trauma Center
Dallas, Texas

Kieran T. Mahan, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Associate Dean for Academic Affairs
Chair and Professor, Department of Podiatric Surgery
Temple University School of Podiatric Medicine
Philadelphia, Pennsylvania

D. Scot Malay, DPM, MSCE, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Director of Podiatric Research and Staff Surgeon
Penn Presbyterian Medical Center
Private Practice
Ankle and Foot Medical Centers of the Delaware Valley
Philadelphia, Pennsylvania

Dennis E. Martin, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
North Charleston, South Carolina

Suhail B. Masadeh, DPM, FACFAS
Faculty
American Health Network Fellowship
Advanced Reconstructive Foot and Ankle Surgery
Private Practice
Muncie, Indiana

Michael P. Maskill, DPM
Orthopaedic Associates of Kalamazoo
Department of Foot and Ankle Surgery
Kalamazoo, Michigan

E. Dalton McGlamry, DPM, DSc (Hon), DHL
Founding Member
The Podiatry Institute
Decatur, Georgia

Michael C. McGlamry, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Cumming, Georgia
Robert W. Mendicino, DPM, FACFAS
Foot and Ankle Surgery
Pinnacle Orthopedic Associates
Salisbury, North Carolina

Allison J.A. Menke, DPM, AACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Attending Surgeon
DeKalb Medical Center
Decatur, Georgia

Thomas J. Merrill, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Professor of Surgery
Barry University School of Podiatric Medicine
Miami Shores, Florida
Residency Director
Mercy Hospital
Miami, Florida

Amanda Meszaros, DPM, FACFAS
Co-Chair, Department of Surgery
Mercy Allen Hospital
Private Practice
Oberlin, Ohio

Justin T. Meyer, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Santa Barbara, California

Andrew J. Meyr, DPM, ACFAS
Assistant Professor, Department of Podiatric Surgery
Temple University School of Podiatric Medicine
Philadelphia, Pennsylvania

J. Michael Miller, DPM, FACFAS
Director of Fellowship Training
Foot and Ankle Reconstructive Surgical Service
American Health Network
Indianapolis, Indiana

Stephen J. Miller, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Anacortes, Washington

Hilaree B. Milliron, DPM
Private Practice
Jacksonville Beach, Florida

William G. Montross, DPM, FACFAS
Attending Physician
Denver Veterans Administration Hospital
Podiatric Residency
Denver, Colorado
Assistant Clinical Professor
Rocky Vista Osteopathic College
Parker, Colorado

Jared L. Moon, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Chicago, Illinois

James H. Morgan Jr, DPM, FACFAS, FAAPSM
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Mobile, Alabama

Robby A. Mothershed, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
AO Alumnus
Department of Orthopedics
University of Washington
Seattle, Washington
Private Practice
Winston-Salem, North Carolina

Travis A. Motley, DPM, MS, FACFAS
Associate Professor
Department of Orthopaedic Surgery
Bone and Joint Institute
University of North Texas Health Science Center
Fort Worth, Texas

Aprajita Nakra, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Phoenix and Gilbert, Arizona

Alan Ng, DPM, FACFAS
Advanced Orthopedic and Sports Medicine Specialists
Residency Committee Highlands/Presbyterian St. Luke’s Medical Center
Denver, Colorado

Lawrence M. Olof, DPM
Diplomate, American Board of Podiatric Surgery
Sports Orthopedic and Rehabilitation (SOAR) Medical Group
Redwood City, California

Lawrence S. Osher, DPM
Professor, Department of Podiatric Medicine
Ohio College of Podiatric Medicine
Independence, Ohio

Kittra T. Owens, DPM
Division Officer, Department of Orthopedics
Naval Hospital
Camp Lejeune, North Carolina

Charles F. Peebles, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Atlanta, Georgia

Jorge G. Penagos Vasquez, MD
Chief, Department of Orthopaedic Surgery and Foot and Ankle
Pediatric Foundation of Guatemala City
Guatemala City, Guatemala

Keith D. Pfeifer, DPM
Assistant Residency Director
Eisenhower Army Medical Center
Fort Gordon, Georgia

Jane Pontious, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Chair, Department of Surgery
Assistant Dean of Clinical Education
Temple University School of Podiatric Medicine
Philadelphia, Pennsylvania

Donald R. Powell, DPM
Faculty
The Podiatry Institute
Attending Surgeon
DeKalb Medical Center
Decatur, Georgia

Linnie V. Rabjohn, DPM, FACFAS
Private Practice
Arlington/Mansfield Foot and Ankle Centers
Arlington, Texas

Johanna-Marie Richey, DPM, BBS
Chief Resident
Kaiser San Francisco Bay Area Foot and Ankle
San Francisco, California
Thomas S. Roukis, DPM, PhD, FACFAS
Department of Orthopaedics
Podiatry and Sports Medicine
Gundersen Lutheran Medical Center
La Crosse, Wisconsin

John A. Ruch, DPM, FACFAS
Director of Medical Education
The Podiatry Institute
Attending Surgeon
DeKalb Medical Center
Decatur, Georgia
Private Practice
Village Podiatry Centers
Tucker, Georgia

Shannon M. Rush, DPM, FACFAS
Director, Silicon Valley Foot and Ankle Fellowship
Palo Alto Medical Foundation
Mountain View, California

Jay D. Ryan, DPM, AACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Staff Physician
Inova Fairfax Hospital
Fairfax, Virginia

John M. Schuberth, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Chief, Foot and Ankle Surgery
Department of Orthopedic Surgery
Kaiser Foundation Hospital
San Francisco, California

Jaclyn M. Schwartz, DPM
Senior Resident
DeKalb Medical Center
Decatur, Georgia

Thomas F. Smith, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Chairman, Podiatry Section
University Hospital
Podiatry Staff
Charlies Norwood VAMC
Augusta, Georgia
Consultant
Eisenhower Army Medical Center
Fort Gordon, Georgia

Joe T. Southerland, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Arlington/Mansfield Foot and Ankle Centers
Arlington, Texas

Sarah A. Spizzirri, DPM, AACFAS
Private Practice
Christie Clinic
Champaign, Illinois

John J. Stapleton, DPM, FACFAS
Foot and Ankle Surgery
VSAS Orthopaedics
Chief of Podiatric Surgery
Leigh Valley Hospital
Allentown, Pennsylvania
Clinical Assistant Professor of Surgery
Penn State College of Medicine
Hershey, Pennsylvania

Jerome K. Steck, DPM, FACFAS
Private Practice
Southern Arizona Orthopedics
Tucson, Arizona

Dawn Y. Stein, DPM, CWS
Department of Podiatry
Grove City Medical Center
Grove City, Pennsylvania

John S. Steinberg, DPM, FACFAS
Associate Professor
Department of Plastic Surgery
Georgetown University School of Medicine
Program Director
MedStar Washington Hospital Center
Podiatric Residency
Co-Director, Center for Wound Healing
MedStar Georgetown University Hospital
Washington, District of Columbia

John J. Stienstra, DPM, FACFAS
Department of Orthopedics
The Permanente Medical Group
Union City, California

Tod R. Storm, DPM, FACFAS
Active Staff
Bozeman Deaconess Hospital
Bozeman, Montana

Robert P. Taylor, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Adjunct Faculty
Department of Medicine
Baylor Medical Center
Garland, Texas
Private Practice
Frisco, Texas

James L. Thomas, DPM, FACFAS
Chief, Division of Foot and Ankle
Department of Orthopaedic Surgery
University of Florida
Jacksonville, Florida

Marija Ugrinich, DPM, AACFAS
Staff Surgeon
Penn Presbyterian Medical Center
Private Practice
Ankle and Foot Medical Centers of the Delaware Valley
Philadelphia, Pennsylvania

John V. Vanore, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Gadsden, Alabama

Harold W. Vogler, DPM, FACFAS
Past Chairman, Department of Surgery
Pennsylvania College of Podiatric Medicine
Philadelphia, Pennsylvania
Past Chairman, Section of Foot and Ankle Surgery
Sarasota Memorial Hospital
Partner and Fellowship Director
Sarasota Orthopedic Associates
Sarasota, Florida

Carl R. Wagreich, DPM
Associate Clinical Professor
University of Southern California
Los Angeles, California
Residency Director
HealthSouth Surgery Center of South Bay/Baja Project Surgical Residency Program
Torrance, California
Co-Director, Baja Project for Crippled Children
Mexicali, Mexico

George F. Wallace, DPM, FACFAS
Director, Podiatry Service
Medical Director, Ambulatory Care Services
University Hospital
University of Medicine and Dentistry of New Jersey
Newark, New Jersey

Mari Wargo-Dorsey, DPM, AACFAS
Private Practice
The Ankle and Foot Care Centers
Boardman, Ohio

R. David Warren, DPM, FACFAS
Private Practice
Arlington, Texas

Steven A. Weiskopf, DPM, FACFAS
Faculty
The Podiatry Institute
Decatur, Georgia
Private Practice
Woodstock, Georgia
Mitzi L. Williams, DPM, FACFAS
Young Affiliate Member
The Podiatry Institute
Decatur, Georgia
Attending Surgeon
San Francisco Bay Area Foot and Ankle
Residency Program
Department of Orthopedics and
Podiatric Surgery
Kaiser Permanente Hospital
Oakland, California

Jason J. Willis, DPM, AACFAS
Attending Podiatrist
Foot Centers of Texas
Methodist Sugar Land Hospital
Sugar Land, Texas

Jon M. Wilson Jr, DPM, AACFAS
Department of Surgery
St. Tammany Parish Hospital
Lakeview Regional Medical Center
Covington, Louisiana

Robyn Winner, DPM
Private Practice
Seattle, Washington

Daniel J. Yarmel, DPM, AACFAS, AAPWCA
Private Practice and Attending Faculty
Pinnacle Health Hospitals
Harrisburg, Pennsylvania

Thomas M. Zgonis, DPM, FACFAS
Associate Professor, Department of
Orthopaedics
Division Chief, Externship
Fellowship Program Director
University of Texas Health Science Center
San Antonio, Texas

Richard J. Zirm, DPM
Faculty
The Podiatry Institute
Decatur, Georgia
Department of Surgery
Southwest General Health Center
Private Practice
Cleveland, Ohio
Foreword

The fourth edition of McGlamery's Comprehensive Textbook of Foot and Ankle Surgery has been written to meet the current need for a comprehensive work on foot and ankle surgery, not only for podiatric surgeons but also for orthopaedic foot and ankle surgeons, who are making valuable contributions to this field.

Foot and ankle surgery has evolved at a rapid pace over the past 30 years. Not until an understanding of foot and ankle biomechanics and the principles of AO-ASIF were materially refined was this surgery practiced with precision. Prior to that time, functional arthroplasty and fusion dominated the field. Orthopaedic companies assisted in that revolution with the development of unique designs of internal and external fixation that brought the surgical results into a functional cure rather than a palliative "fix."

In concert with this revolution, E. Dalton McGlamry, DPM, founded the Podiatry Institute in Atlanta and soon thereafter edited the text Fundamentals of Foot Surgery and the first edition of The Comprehensive Textbook of Foot Surgery. Dr. McGlamry was a great inspiration to all podiatric surgeons, and his legacy has been carried on by many of his residents and colleagues.

This two-volume edition of McGlamery's Comprehensive Textbook of Foot and Ankle Surgery, edited by Joe T. Southerland, DPM, and assisted by 151 authors, consists of 117 chapters and more than 1,900 pages and is worthy of comparison with Campbell's Operative Orthopedics. Virtually every aspect of foot and ankle surgery has been covered, from ingrown nails to total ankle arthroplasty and hybrid external fixation.

To overcome the widespread conception of foot and ankle surgery as a purely mechanical equation, an effort is made in the first section of this text to correlate the technical principles used in this subspecialty. This is followed by a section on perioperative management, which includes the various aspects that one encounters in foot and ankle surgery. The next 50 chapters follow guidelines of anatomical sites where foot and ankle surgery is performed, beginning with nail surgery and concluding with midfoot and hindfoot arthrodesis. The section on first ray, hallux abducto valgus, and related deformities is especially noteworthy, with 14 chapters on the subject covering virtually every aspect of contemporary correction of bunion deformities and their complications. This is true as well for the section on trauma, with 18 comprehensive chapters on the subject.

This book is designed to be a user-friendly and clinically relevant text on common foot and ankle surgery procedures. As the discipline becomes more and more sophisticated, it is obvious that the technical component of operative intervention is critical to clinical success or failure. Therefore, there continues to be an important need to understand the technical aspects of foot and ankle surgery. Many pearls of wisdom are detailed by the authors in order to deal with the multiple potential pitfalls seen in patients with complex foot and ankle deformities.

I have often said that "surgery is both a science and an art, but foot and ankle surgery may be more art than science." This text should prove to be the resource of choice for modern foot and ankle surgery care over the next several years. It will serve those who are novices in the field who wish to concentrate on principles, those experienced surgeons who wish to fine-tune their approach, and everyone in between.

Lowell Scott Wei, Sr, DPM
Wei Foot and Ankle Institute
Des Plaines, Illinois
Preface

It is with great pleasure that we present the fourth edition of McGlamry’s Comprehensive Textbook of Foot and Ankle Surgery. The goal of this text, as always, is to help students build a good foundation, to help residents develop their skills, and to help surgeons hone their technique.

Like the three previous editions, this book encompasses all facets of foot and ankle surgery. This edition, however, places greater emphasis on an instructional approach so as to better help the surgeon, resident, or student see how the procedures are done. It has been completely reorganized to present content in a more logical fashion. Divided into 12 parts across 2 volumes, it begins with basics such as biomaterials and pain management and moves through anatomic locations, physiologic conditions, special surgery, tumors, and trauma. This fourth edition has dozens more chapters and contributors than earlier volumes, making it the most truly comprehensive Comprehensive Textbook so far. In addition, for the first time, the textbook has been printed in full color throughout, greatly clarifying the appearance of disorders, diagnostic signs, and surgical landmarks and bringing the operative steps to life.

As the lead editor, I extend my gratitude to the section editors for their work in helping make this a reality. However, most appreciated are the authors, without whom a book of this sort cannot exist. Amid the responsibilities of practice, teaching, and family lives, they were able to find the time needed to write these chapters. Unfortunately, this edition is missing one esteemed author, Gerard V. Yu, who passed away unexpectedly in 2005.

It has been a several-year journey since we started work on this book, and I am very proud to be a part of it. It is my hope that it delivers what we set out to do.

Joe T. Southerland, DPM, FACFAS
Introduction

As the director of Medical Education of the Podiatry Institute, I am proud to provide the Introduction for the fourth edition of McGlamry’s Comprehensive Textbook of Foot and Ankle Surgery.

This textbook is the ongoing testament to the life passion of E. Dalton McGlamry, DPM. This ambitious project was conceived 30 years ago under the direction of Dr. McGlamry. The supporting staff included graduates of the original Doctor’s Hospital Podiatric Residency and many other highly talented and dedicated educators in the podiatric profession.

The first edition, called simply Comprehensive Textbook of Foot Surgery, took several years to compile and edit and was published in 1987. It could not have been completed without the tireless support of Dalton’s wife, Becky, who served the unenviable roll as authors’ editor. The second edition was produced in 1992 under the guidance of editors Dalton McGlamry, Alan Banks, and Michael Downey. The third edition was released in 2001 with Alan Banks, Michael Downey, Dennis Martin, and Steve Miller serving as editors. You now hold the fourth edition. Our many thanks are owed to editors Joe Southerland, Jeffrey Boberg, Michael Downey, Aprajita Nakra, and Linnie Rabjohn for their countless hours of work.

Anyone who has attempted to produce a scientific paper knows the many hours of commitment and effort that are necessary to complete even a single article. That the dedicated faculty of the Podiatry Institute have stuck together for over 40 years and overseen the publication of a major textbook on foot and ankle surgery through four editions is a remarkable feat. One of our dearest members, the late Gerard Vincent Yu, deserves special mention. His many contributions to podiatric education, his drive and energy, his integrity, his love of the profession, and his commitment to colleagues and friends have inspired and always will inspire us.

The contributing authors for this textbook throughout its lifespan so far are too many to mention individually, but without each and every one of them those editions could not have been completed. I would like to recognize and salute each of the individuals who once again have sacrificed their personal time and energy to perpetuate this information.

The completion of this edition of McGlamry’s Comprehensive Textbook of Foot and Ankle Surgery could not have been possible without the tireless efforts of Mr. Dan Vickers, the executive director of the Podiatry Institute. It has been Dan’s commitment and support to the project, to the institute, and to each of us that has kept us on track to reach our goal once again.

John A. Ruch, DPM
CH A P T E R

58

Triple Arthrodesis

The triple arthrodesis performed today is a variation of the procedure described by Ryerson in 1923 (1). Modifications have evolved out of the need to meet new challenges as the triple arthrodesis has been applied to a greater variety of disorders (2–12). The basic aim of a triple arthrodesis is to improve foot function by providing stability, correction of deformity, and elimination of pain. Providing the patient with a stable, pain-free platform for ambulation through triple arthrodesis offers gratifying and predictable results for a variety of foot deformities (13–23).

INDICATIONS

In the broadest sense, the triple arthrodesis is used to achieve four major goals: correction of deformity, relief of pain, stabilization, and improved function. The dominant deformity in the early twentieth century was flaccid paralysis secondary to poliomyelitis. Today, various conditions are amenable to repair with triple arthrodesis. Table 58.1 reflects the wide range of indications in which this surgery is performed. Many of these disease processes reflect similar deformities; each of the major deformities can be categorized into valgus, varus, or miscellaneous conditions (Table 58.2).

PREOPERATIVE CONSIDERATIONS

Certain considerations should be made before triple arthrodesis is performed. These include patient expectations, the desired goal of the fusion and its functional effect, timing of the surgical intervention, biomechanical and positional considerations of the subtalar joint (STJ) and midtarsal joint, the position and alignment of the ankle and leg, bone quality, soft tissue quality, the patient’s age, and the anticipated recovery time.

Candidates for triple arthrodesis usually possess conditions that have proven resistant to conservative therapy, or they have a condition that cannot be expected to respond to conservative measures and one in which the surgeon can expect an adequate result with fusion. The elimination of STJ and midtarsal joint motion may restrict the ability of the patient to adapt to uneven surfaces and terrain; however, in candidates for triple arthrodesis, this motion is often either painful or absent preoperatively. Additionally, the existing deformity often prevents the motion from serving any benefit for the patient, due to either painful arthritis or uncontrollable instability.

Evaluation of ankle joint range of motion is a critical part of the preoperative assessment. This may reveal either an arthritic limitation or a soft tissue equinus contracture, altering the surgical plan. Careful examination needs to be performed in a patient with a severely collapsed pes valgus deformity because significant amounts of dorsiflexion may occur at the midtarsal joint level. In patients with rigid pes valgus conditions, it is difficult to position the foot adequately to assess the true amount of ankle dorsiflexion until the joints have been resected at the time of surgery. In contrast, ankle joint dorsiflexion in patients with a pes cavus deformity may first appear inadequate because of the increase in the osseous height from the maximally supinated position of the midtarsal joint and STJ. Upon restoring a more plantigrade osseous alignment after fusion, one may note a suitable increase in the dorsiflexory motion at the ankle.

Perhaps the most critical aspect of triple arthrodesis is the ultimate position of the foot after fusion. Poor or inappropriate positioning of the foot may be one of the primary reasons for residual pain and the creation of adjacent arthritis postoperatively. The heel should be aligned to rest in a neutral to slightly everted position. The greatest success in triple arthrodesis has been achieved with the midtarsal joint positioned in slight valgus when fused, that is, with the medial column slightly plantarflexed relative to the lateral column. This position increases the stability of the medial column and first ray, permitting enhanced first metatarsophalangeal joint motion. The valgus positioning may also be more easily accommodated with an orthotic device postoperatively. If the medial column is dorsiflexed relative to the lateral column, the patient is left with a fixed forefoot varus deformity for which no suitable compensation exists.

It is important to plan the alignment of the forefoot to the rearfoot and the rearfoot to the leg (Fig. 58.1). This is especially critical in determining the final position of fusion. The foot normally exhibits 10 to 15 degrees of abduction from the line of progression in gait. In arthrodesis of the rearfoot, the surgeon must know the position of the knee during gait as well as during the surgical procedure. If the knee functions when medially rotated at 15 degrees, then it would be desirable to abduct the foot on the leg 30 degrees, thus resulting in a 15-degree abduction from the line of progression. It is not advisable to abduct a foot if the patient already possesses 15 to 30 degrees of lateral position of the knee in gait. In the latter instance, the foot may be aligned directly with the knee.

These preoperative assessments are aided by a series of weight-bearing radiographs (Fig. 58.2) including dorsoplantar, medial oblique, lateral, and calcaneal axial views. Weight-bearing films allow a more representative view of osseous alignment. The degree of deformity should be evaluated in each of the cardinal planes prior to proceeding with surgical reconstruction.

TECHNIQUE

MEDIAL INCISION/DISSECTION

Landmarks for the medial approach to triple arthrodesis include the medial gutter of the ankle joint proximally and
TABLE 58.1 Conditions That May Benefit from Triple Arthrodesis

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic collapsing pes planovalgus deformity</td>
</tr>
<tr>
<td>Peroneal spastic flatfoot</td>
</tr>
<tr>
<td>Tarsal coalition</td>
</tr>
<tr>
<td>Congenital vertical talus</td>
</tr>
<tr>
<td>Chronic pain</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>Degenerative arthritis</td>
</tr>
<tr>
<td>Posttraumatic arthritis</td>
</tr>
<tr>
<td>Charcot arthropathy</td>
</tr>
<tr>
<td>Tibial posterior tendon dysfunction</td>
</tr>
<tr>
<td>Idiopathic cavus and cavovarus deformities</td>
</tr>
<tr>
<td>Residual or uncorrected clubfoot</td>
</tr>
<tr>
<td>Poliomyelitis</td>
</tr>
<tr>
<td>Spina bifida</td>
</tr>
<tr>
<td>Friedreich ataxia</td>
</tr>
<tr>
<td>Charcot-Marie-Tooth disease</td>
</tr>
<tr>
<td>Muscular dystrophy</td>
</tr>
<tr>
<td>Cerebral palsy</td>
</tr>
<tr>
<td>Myelodysplasia</td>
</tr>
<tr>
<td>Arthrogryposis</td>
</tr>
<tr>
<td>Joint instability</td>
</tr>
</tbody>
</table>

TABLE 58.2 Indications for Triple Arthrodesis

<table>
<thead>
<tr>
<th>Category</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valgus foot deformities</td>
<td>Collapsing pes planovalgus deformity</td>
</tr>
<tr>
<td></td>
<td>Tibial posterior tendon dysfunction</td>
</tr>
<tr>
<td></td>
<td>Tarsal coalition</td>
</tr>
<tr>
<td>Arthritic conditions</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td></td>
<td>Degenerative arthritis</td>
</tr>
<tr>
<td></td>
<td>Posttraumatic arthritis</td>
</tr>
<tr>
<td></td>
<td>Chronic pain</td>
</tr>
<tr>
<td>Varus foot deformities</td>
<td>Cavus and cavovarus</td>
</tr>
<tr>
<td></td>
<td>Talipes equinovarus</td>
</tr>
<tr>
<td>Miscellaneous conditions</td>
<td>Joint instability</td>
</tr>
<tr>
<td></td>
<td>Neuromuscular disease</td>
</tr>
<tr>
<td></td>
<td>Hereditary familial sensorimotor neuropathies</td>
</tr>
<tr>
<td></td>
<td>Paralytic deformities</td>
</tr>
<tr>
<td></td>
<td>Cerebral palsy</td>
</tr>
<tr>
<td></td>
<td>Charcot arthropathy</td>
</tr>
<tr>
<td></td>
<td>Other diseases affecting the spinal cord and brain</td>
</tr>
</tbody>
</table>

...the inferior aspect of the navicular cuneiform joint (Fig. 58.3). This oblique orientation provides full exposure of the talonavicular joint and allows for screw fixation of the STJ and the talonavicular joint. A dorsal to plantar fixation of the STJ utilizes insertion of the large cancellous screw at the dorsal medial aspect of the talar neck. Fixation of the talonavicular joint with a large cancellous screw is directed from the distal inferior aspect of the navicular up into the head and neck of the talus.

Medial skin incision for exposure of the talonavicular joint and insertion of the TN screw and the talocalcaneal screw extends from the medial gutter of the ankle to inferior aspect of the navicular cuneiform joint (Fig. 58.4A). The greater saphenous vein will usually be encountered during dissection through the subcutaneous layers. Inferior tributaries may be transected and ligated and the main portion of the vein reflected superiorly (Fig. 58.4B). The primary incision for exposure of the talonavicular joint is made through the deep fascia and capsule along...
the dorsal medial aspect of the joint. The incision extends from the medial gutter of the ankle joint to the navicular cuneiform joint (Fig. 58.4C).

The capsular incision for the talonavicular joint is a T incision (Fig. 58.5A and B). The dorsal medial longitudinal incision allows for reflection of capsular tissues for the dorsal aspect of the talonavicular joint. The vertical medical incision allows for deliverance of the head of the talus without reflecting capsular tissues of the medial aspect of navicular. A secondary incision is made vertically along the proximal medial edge of the navicular but does not usually transect the tibialis posterior tendon (Fig. 58.5C and D). This modification in the talonavicular incision leaves capsule and periosteal tissues intact over the medial aspect of the navicular. The capsule
Part VI • Midfoot Joint Arthrodesis

is reflected from the dorsal surface of the talonavicular joint and will routinely release the dorsal talonavicular ligament (Fig. 58.5E). This modification in the arthrotomy of the talonavicular joint provides full exposure and minimizes soft tissue or periosteal reflection.

TALONAVICULAR JOINT RESECTION

Joint resection starts with contour resection of the talar head (Fig. 58.6A). The contour joint resection technique of the talar head preserves the shape of the joint and minimizes bone resection. Preservation of the joint contour also allows for manual repositioning of the midtarsal joints by a normal rotation of the medial column. Contour resection of the articular cartilage and subchondral plate of the talar head is performed with the use of a small osteotome (no. 10) and mallet (Fig. 58.6B). The osteotome is advanced only several millimeters to avoid excessive depth and penetration into talar head (Fig. 58.6C). This technique is extremely helpful because of the convex contour of the talar head. The depth of the osteotome is directed beneath the subchondral plate in a mosaic pattern designed to resect the articular surface and preserve the contour of the head of the talus (Fig. 58.6D).

The small lamina spreader is repositioned for resection of the articular surface of the navicular (Fig. 58.7A). Curettage technique is used to remove the articular cartilage on the navicular (Fig. 58.6B). Care is taken to maintain the dorsal rim of the bone to assure bone-to-bone contact of the convex talar head and the concave navicular surface (Fig. 58.7C). A rotary oval burr is used to penetrate the subchondral plate (Fig. 58.7D and E). Distraction of the talonavicular joint with a lamina spreader demonstrates the resection of the articular surfaces of the head of the talus and the concave surface of the navicular exposing raw cancellous bone (Fig. 58.7F).

Figure 58.5 (Continued) C,D: Secondary incision is made vertically along the proximal medial edge of the navicular but does not usually transect the tibialis posterior tendon. E: Reflection of the capsule from the dorsal surface of the talonavicular joint.
Chapter 58 • Triple Arthrodesis

LATERAL INCISION/DISSECTION

Landmarks for the lateral approach for triple arthrodesis include the distal tip of the fibular malleolus and the junction of the fourth and fifth metatarsal bases (Fig. 58.8A). A relatively straight line incision between these two points crosses the inferior edge of the sinus tarsi and the dorsal lateral aspect of the calcaneal cuboid joint (CCJ). The incision is usually between the course of the sural nerve and the intermediate dorsal cutaneous nerve. Controlled depth incision technique is used to separate the skin and to avoid laceration of the underlying veins (Fig. 58.8B). Dissection through the subcutaneous tissues exposes the deep fascia over the extensor digitorum brevis.

Figure 58.6 A: Contour resection of the talar head. B: Contour resection of the articular cartilage and subchondral plate of the talar head. C,D: Osteotome advancement.

Figure 58.7 A: Repositioning of the small lamina spreader. B: Removal of the articular cartilage on the navicular. (Continues on next page)
Midfoot Joint Arthrodesis

Muscle belly, using blunt sponge technique (Fig. 58.8E). The primary purpose of this separation between the layers is to facilitate wound closure. The tendon of the peroneus tertius is encountered overlying the EDB muscle belly.

The anatomic pathway to the STJ and CCJ lies between the inferior edge of the EDB muscle belly and the superior aspect of the peroneal tendons (Fig. 58.9A). Reflection of (EDB) muscle belly (Fig. 58.8C). Superficial veins that crossed the incision may be ligated or cauterized. A communicating branch of the sural nerve to the intermediate dorsal cutaneous nerve may be encountered. If the nerve can be safely retracted, it is preserved, but more often it is sacrificed (Fig. 58.8D). The superficial fascia or the subcutaneous layer is easily separated from the deep fascia, especially over the extensor digitorum muscle belly, using blunt sponge technique (Fig. 58.8E). The primary purpose of this separation between the layers is to facilitate wound closure. The tendon of the peroneus tertius is encountered overlying the EDB muscle belly.

The anatomic pathway to the STJ and CCJ lies between the inferior edge of the EDB muscle belly and the superior aspect of the peroneal tendons (Fig. 58.9A). Reflection of

Figure 58.7 (Continued) C: The dorsal rim of bone is maintained. D,E: A rotary oval burr is used to penetrate the subchondral plate. F: Head of the talus and concave surface of the navicular, exposing raw cancellous bone.

Figure 58.8 A: Landmarks for the lateral approach for triple arthrodesis include the distal tip of the fibular malleolus and the junction of the fourth and fifth metatarsal bases. B: Controlled depth incision technique to separate the skin and to avoid laceration of the underlying veins.
of the CCJ (Fig. 58.9E). A venous plexus is consistently identified beneath the muscle belly overlying the cuboid. This venous plexus should be isolated and ligated (Fig. 58.9F and G).

The EDB muscle origin from the anterolateral aspect of the sinus tarsi is visualized (Fig. 58.10A). The muscle belly is retracted for visualization of the dorsal lateral aspect of the CCJ. The peroneal tendons should be totally ensheathed.

The lateral process of the talus is the key structure for the subcutaneous tissues reveals the key dissection landmarks for deep fascial incision: the junction of the inferior edge of the EDB muscle belly and the course of the peroneal tendons (Fig. 58.9B and C). The deep fascia incision is placed at the inferior edge of EDB muscle just superior to the peroneal retinaculum and the sheath extending into the sinus tarsi (Fig. 58.9D). The edge of the EDB muscle belly is easily reflected from the capsular tissue over the dorsal lateral aspect of the CCJ (Fig. 58.9E). A venous plexus is consistently identified beneath the muscle belly overlying the cuboid. This venous plexus should be isolated and ligated (Fig. 58.9F and G).

The EDB muscle origin from the anterolateral aspect of the sinus tarsi is visualized (Fig. 58.10A). The muscle belly is retracted for visualization of the dorsal lateral aspect of the CCJ. The peroneal tendons should be totally ensheathed. The lateral process of the talus is the key structure for the subcutaneous tissues reveals the key dissection landmarks for deep fascial incision: the junction of the inferior edge of the EDB muscle belly and the course of the peroneal tendons (Fig. 58.9B and C). The deep fascia incision is placed at the inferior edge of EDB muscle just superior to the peroneal retinaculum and the sheath extending into the sinus tarsi (Fig. 58.9D). The edge of the EDB muscle belly is easily reflected from the capsular tissue over the dorsal lateral aspect of the CCJ (Fig. 58.9E). A venous plexus is consistently identified beneath the muscle belly overlying the cuboid. This venous plexus should be isolated and ligated (Fig. 58.9F and G).

The EDB muscle origin from the anterolateral aspect of the sinus tarsi is visualized (Fig. 58.10A). The muscle belly is retracted for visualization of the dorsal lateral aspect of the CCJ. The peroneal tendons should be totally ensheathed. The lateral process of the talus is the key structure for the subcutaneous tissues reveals the key dissection landmarks for deep fascial incision: the junction of the inferior edge of the EDB muscle belly and the course of the peroneal tendons (Fig. 58.9B and C). The deep fascia incision is placed at the inferior edge of EDB muscle just superior to the peroneal retinaculum and the sheath extending into the sinus tarsi (Fig. 58.9D). The edge of the EDB muscle belly is easily reflected from the capsular tissue over the dorsal lateral aspect of the CCJ (Fig. 58.9E). A venous plexus is consistently identified beneath the muscle belly overlying the cuboid. This venous plexus should be isolated and ligated (Fig. 58.9F and G).

The EDB muscle origin from the anterolateral aspect of the sinus tarsi is visualized (Fig. 58.10A). The muscle belly is retracted for visualization of the dorsal lateral aspect of the CCJ. The peroneal tendons should be totally ensheathed. The lateral process of the talus is the key structure for the subcutaneous tissues reveals the key dissection landmarks for deep fascial incision: the junction of the inferior edge of the EDB muscle belly and the course of the peroneal tendons (Fig. 58.9B and C). The deep fascia incision is placed at the inferior edge of EDB muscle just superior to the peroneal retinaculum and the sheath extending into the sinus tarsi (Fig. 58.9D). The edge of the EDB muscle belly is easily reflected from the capsular tissue over the dorsal lateral aspect of the CCJ (Fig. 58.9E). A venous plexus is consistently identified beneath the muscle belly overlying the cuboid. This venous plexus should be isolated and ligated (Fig. 58.9F and G).

The EDB muscle origin from the anterolateral aspect of the sinus tarsi is visualized (Fig. 58.10A). The muscle belly is retracted for visualization of the dorsal lateral aspect of the CCJ. The peroneal tendons should be totally ensheathed. The lateral process of the talus is the key structure for the subcutaneous tissues reveals the key dissection landmarks for deep fascial incision: the junction of the inferior edge of the EDB muscle belly and the course of the peroneal tendons (Fig. 58.9B and C). The deep fascia incision is placed at the inferior edge of EDB muscle just superior to the peroneal retinaculum and the sheath extending into the sinus tarsi (Fig. 58.9D). The edge of the EDB muscle belly is easily reflected from the capsular tissue over the dorsal lateral aspect of the CCJ (Fig. 58.9E). A venous plexus is consistently identified beneath the muscle belly overlying the cuboid. This venous plexus should be isolated and ligated (Fig. 58.9F and G).

The EDB muscle origin from the anterolateral aspect of the sinus tarsi is visualized (Fig. 58.10A). The muscle belly is retracted for visualization of the dorsal lateral aspect of the CCJ. The peroneal tendons should be totally ensheathed. The lateral process of the talus is the key structure for the subcutaneous tissues reveals the key dissection landmarks for deep fascial incision: the junction of the inferior edge of the EDB muscle belly and the course of the peroneal tendons (Fig. 58.9B and C). The deep fascia incision is placed at the inferior edge of EDB muscle just superior to the peroneal retinaculum and the sheath extending into the sinus tarsi (Fig. 58.9D). The edge of the EDB muscle belly is easily reflected from the capsular tissue over the dorsal lateral aspect of the CCJ (Fig. 58.9E). A venous plexus is consistently identified beneath the muscle belly overlying the cuboid. This venous plexus should be isolated and ligated (Fig. 58.9F and G).

The EDB muscle origin from the anterolateral aspect of the sinus tarsi is visualized (Fig. 58.10A). The muscle belly is retracted for visualization of the dorsal lateral aspect of the CCJ. The peroneal tendons should be totally ensheathed. The lateral process of the talus is the key structure for
entrance to the sinus tarsi (Fig. 58.10E). The incision is then extended distally along the dorsal lateral edge of the calcaneus, across the CCJ, and out to the metatarsal cuneiform articulation.

The EDB muscle belly is then reflected from the dorsal surface of the calcaneus and the cuboid (Fig. 58.10G). A vertical incision is made at the anterior edge of the lateral process of the talus (Fig. 58.10D). This incision encounters the dorsal lateral edge of the calcaneus and the entrance to the sinus tarsi (Fig. 58.10E). The incision is then extended distally along the dorsal lateral edge of the calcaneus, across the CCJ, and out to the metatarsal cuneiform articulation.

The EDB muscle belly is then reflected from the dorsal surface of the cuboid and the dorsal aspect of the calcaneus (Fig. 58.11A). This dissection of the sinus tarsi communicates with the elevation of the dorsal tissue over the calcaneocuboid
Correction of the transverse plane deformity, abduction, or adduction of the forefoot is exclusively at the midtarsal joints. In the adducted forefoot, a laterally based wedge is performed in the CCJ to abduct the forefoot. Saw resection is the preferred technique of resection for the CCJ (Fig. 58.12).

CALCANEAL CUBOID JOINT RESECTION

Correction of the transverse plane deformity, abduction, or adduction of the forefoot is exclusively at the midtarsal joints. In the adducted forefoot, a laterally based wedge is performed in the CCJ to abduct the forefoot. Saw resection is the preferred technique of resection for the CCJ (Fig. 58.12).

Figure 58.10

A: The EDB muscle origin from the anterolateral aspect of the sinus tarsi. B: The lateral process of the talus is the key structure for orientation of the periosteal incision and identification of the STJ. C: Capsular incision for exposure of the STJ and CCJ. D,E: Vertical incision made at the anterior edge of the lateral process of the talus and extended distally along the dorsal lateral edge of the calcaneus, across the CCJ and out to the metatarsal cuneiform articulation.
Joint resection begins with the articular surface of the calcaneus. A 1- to 2-mm wedge of the articular surface and the subchondral plate is resected (Fig. 58.13A). Correction for transverse plane deformity can be achieved with resecting more for this surface (Fig. 58.13B). A fish scale pattern is created in the subchondral bone surface of the calcaneus for good bone-to-bone contact (Fig. 58.13C). The articular cartilage and the subchondral plate of the cuboid are resected with clear visualization of the resected calcaneal surface (Fig. 58.13D and E).

SUBTALAR JOINT RESECTION
Contour resection of the articular surfaces of the STJ is performed with the use of a small osteotome and mallet.
Chapter 58 • Triple Arthrodesis

The osteotome is directed just beneath the subchondral bone plate and penetrates approximately 5 to 8 mm into the substance of the calcaneus. This controlled penetration is used to maintain the contour of the posterior facet and avoid excessive bone resection (Fig. 58.14C). Sequential resection of the remaining portions of the facet is performed again in incremental segments (Fig. 58.14D), allowing the surgeon to sculpt or maintain the contour of the original joint facet with a mosaic pattern of joint resection. A similar technique is used for resection of the articular cartilage and subchondral bone plate of the talar component of the posterior facet (Fig. 58.14E and F).

Resection of the articular cartilage and the subchondral bone plate from the concave talar portion of the posterior facet is performed by sequential small sections to follow the contour of the facet and avoid fragmentation of the large medial shelf of the talus (Fig. 58.15A). Again, the osteotome is advanced only several millimeters to avoid excessive depth and penetration into the posterior aspect of the talus.

Figure 58.12 Laterally based wedge in the CCJ to abduct the adducted forefoot.

Figure 58.13 A: A 1- to 2-mm wedge of the articular surface and the subchondral plate is resected. B: Transverse plane deformity is corrected by resecting more of this surface. C: Fish scale pattern created in the subchondral bone surface of the calcaneus. (Continues on next page)
Figure 58.13 (Continued) D,E: Resection of the articular cartilage and the subchondral plate of the cuboid.

Figure 58.14 A: An anterior lateral view of the STJ demonstrates the articular surface of the calcaneal portion of the posterior facet and middle facet overlying the sustentaculum tali. The joint is distracted with the use of a small lamina spreader. B: Contour resection of the articular surfaces of the STJ. C: The osteotome is directed just beneath the subchondral bone plate and penetrates approximately 5 to 8 mm into the substance of the calcaneus.
allows for manual repositioning of the STJ and midtarsal joint by a normal rotation of the STJ complex. The calcaneal portion of the middle facet is identified and is resected in a similar subchondral plate resection technique (Fig. 58.15D). The talar surface of the middle facet is also resected with an osteotome (Fig. 58.15E and F).

(Fig. 58.15B). This technique is extremely helpful because of the concave contour of the talar portion of the posterior facet. The contour joint resection technique of the posterior facet of the STJ preserves the shape of the joint and minimizes bone resection and loss of height of the rearfoot complex (Fig. 58.15C). Preservation of the joint contour also

Figure 58.14 (Continued) D,E: Sequential resection of the remaining portions of the facet and of the articular cartilage and subchondral bone plate of the talar component of the posterior facet. F: The osteotome is placed at the anterior lateral aspect of the joint and directed just beneath the subchondral plate following the slope of the anterior portion of the facet.

Figure 58.15 A: Resection of the articular cartilage and the subchondral bone plate from the concave talar portion of the posterior facet. (Continues on next page)
ALIGNMENT/TEMPORARY FIXATION

Contour resection of the STJ and talonavicular joint allows for manual repositioning or realignment of the rearfoot complex. This joint resection technique allows the surgeon to position the foot into a stable plantar grade alignment by manipulating the rearfoot joints through a relatively normal joint range of motion and alignment of the foot to the leg. The optimal position for the rearfoot complex is identified and temporarily fixated with the insertion of Steinmann pins (Fig. 58.16A). Alignment of the talonavicular joint is performed initially and temporarily fixated with a Steinmann pin (Fig. 58.16B). With contour resection of the STJ and midtarsal joint, optimal positioning of the talonavicular joint will usually create the desired alignment.

Figure 58.15 (Continued) B: The osteotome is advanced only several millimeters to avoid excessive depth and penetration into the posterior aspect of the talus. C: Strategic segmental resection of the articular cartilage and subchondral plate of the talar portion of the posterior facet maintain the contour of the joint. D: The calcaneal portion of the middle facet is resected. E: The talar surface of the middle facet is resected with an osteotome. F: Completed contour resection of the STJ and talonavicular joint.
and apposition of the STJ and CCJ. Temporary fixation of the STJ and midtarsal joint has been performed with insertion of Steinmann pins (Fig. 58.16C). The pins may be used for relative guidance for insertion of the permanent fixation devices. If traditional noncannulated cancellous screws are utilized, positioning of the temporary fixation pins should be offset from the optimal point of penetration intended for the permanent fixation devices. If cannulated screw fixation is intended, the guidewires are placed in the optimum position for the fixation device.

PERMANENT FIXATION

Permanent fixation of the STJ is usually performed initially. A 3.2-mm drill is inserted in the dorsal medial aspect of the neck of the talus and directed toward the posterior, inferior lateral corner of the calcaneus (Fig. 58.17A and B). A large 6.5-mm cancellous screw with a 32-mm thread pattern is inserted for compression fixation of the STJ (Fig. 58.17C). Intraoperative x-rays should be used to confirm the position and alignment of the fixation devices.

Fixation of the talonavicular joint is performed by the insertion of a large cancellous screw (16-mm thread pattern), which is inserted from the distal inferior aspect of the navicular and directed proximally up into the neck of the talus (Fig. 58.17D and E). The CCJ is fixated with a large cancellous screw (16-mm thread pattern). The screw is inserted from the dorsal lateral aspect of the distal cuboid and directed proximally across the CCJ and into the midportion of the body of the calcaneus (Fig. 58.17F–H).

If screw purchase is not completely secure and adequate, apposition and alignment of the joint may be forced with the insertion of staple fixation (Fig. 58.18).

CLOSURE

Closed-suction drains are routinely employed to extravasate soft tissue and cancellous bone bleeding after closure of the surgical wounds (Fig. 58.19A). This technique helps avoid formation of significant hematoma. Layered wound closure is employed to restore normal anatomic tissue layers and minimizes dead space that may lead to hematoma and other wound complications (Fig. 58.19B). The skin incisions are usually sutured with an intradermal technique utilizing absorbable sutures (Fig. 58.19C). The incision lines are reinforced with Steri-Strips. The surgical area is usually infiltrated with a long-acting local

Figure 58.16 Steinmann pins are used for temporary fixation of the rearfoot complex (A), the talonavicular joint (B), and the STJ and midtarsal joint (C).
POSTOPERATIVE CONSIDERATIONS

Postoperative management of triple management can be viewed as a sequence of phases from the day of surgery up to 1 year after surgery.

PHASE I: INITIAL MANAGEMENT (DAYS 0 TO 5)

Initial management begins with placement of closed-suction drainage system medially and laterally to evacuate hemorrhagic drainage after closure of the incision. A Jones compression cast is applied following wound closure to control edema. Several days later, the cast is removed and the wound is assessed and the extent of the edema is evaluated. A below-the-knee cast is reapplied for the remainder of the postoperative phase.

PHASE II: WOUND HEALING (DAY 5 TO 4 WEEKS)

This is a period of wound healing and resolution of the inflammatory response. The patient is to remain non-weight-bearing throughout this phase. If significant edema is present, bivalving the cast is an option.

PHASE III: CONSOLIDATION (WEEKS 4 TO 8)

Radiographs are obtained at 3 to 4 weeks postoperatively to assess the progress of osseous healing (Fig. 58.20). The

Figure 58.17 A: Drill insertion for permanent fixation of the STJ. B,C: Orientation of the talocalcaneal screw is from the dorsomedial aspect of the neck of the talus perpendicular across the posterior facet of the STJ to the posterior lateral corner of the calcaneus. D,E: Orientation of the talonavicular screw is from the medial, distal inferior aspect of the navicular, up the neck of the talus and into the midsubstance of the dome of the talus.
Figure 58.17 (Continued) **F,G:** Orientation of the calcaneal-cuboid screw is from the distal dorsal lateral aspect of the cuboid, across the CCJ toward the medial wall of the calcaneus below the sustentaculum tali. **H:** A composite view of fixation of the talonavicular joint, talocalcaneal joint, and CCJ for triple arthrodesis.

Figure 58.18 **A,B:** If screw purchase is not completely secure and adequate, apposition and alignment of the joint may be forced with the insertion of staple fixation.
Figure 58.19 A: Use of closed-suction drains. B: Layered wound closure. C: Skin incision closure. D: Jones compression dressing and short leg cast.

Figure 58.20 Postoperative radiographs.
radiographs are obtained through the cast. Patient is encouraged to perform range-of-motion exercises of the digits and knee and hip while maintaining non-weight-bearing.

PHASE IV (WEEKS 10 TO 12)

Radiographs are repeated at week 10. With evidence of adequate consolidation, patient may begin partial weight-bearing with crutches or walker at week 10 to 12.

PHASE V (3 TO 6 MONTHS)

At 3 months, the patient can begin full weight-bearing with a high-top, padded boot or an elastic foot and ankle support stocking. The patient is able to graduate into a normal activity with aggressive physical therapy by 4 to 6 months to avoid stiffness and disuse atrophy.

RESULTS AND COMPlications

Triple arthrodesis has proven to be an excellent means of correcting deformity, reducing symptoms, providing stability, and enhancing function for many conditions. Refinements in technique, instrumentation, and fixation and better understanding of biomechanics allow the surgeon to provide a more reliable correction of deformity with a lower rate of complications. Nonetheless, as with any procedure, complications may arise. Historically, pseudoarthrosis has been a common complication after triple arthrodesis. In modern times, calcaneocuboid joint appears to be the primary site for delayed healing rather than talonavicular joint in the past. The use of two incisions rather than a single lateral incision has likely reduced the rate of talonavicular joint nonunion. Weight-bearing stresses on the lateral column with early weight-bearing are the likely reason for the more frequently encountered nonunion of the CCJ. The role of stable fixation technique cannot be underestimated in reducing the overall incidence of nonunion. Other complications including recurrence of deformity, degenerative arthrosis in adjacent joints, and avascular necrosis have been documented after triple arthrodesis. These complications can be minimized with effective planning, proper technical execution, and sensible postoperative management.

This is a time-tested and effective procedure and is a viable treatment option for various deformities and malformations. Relief of pain, improvement of function, correction of deformity, and stabilization of the rearfoot are clear indications of this procedure.

REFERENCES