AMINOGLYCOSIDES

Michael S. Downey, DPM

I. CLASSIFICATION OF DRUGS

- A. Streptomycin
- B. Kanamycin (Kantrex[®], Klebcil[®])
- C. Netilmicin (Netromycin^R)
- D. Neomycin-D (Mycifradin^R)
- E. Gentamicin (Garamycin^R)
- F. Tobramycin (Nebcin[®])
- G. Amikacin (Amikin[®])
- H. Sisomycin
- II. MAIN INDICATIONS
 - A. Serious gram-negative rod infections or sepsis
 - B. *Pseudomonas aeruginosa* (usually in combination with a third generation cephalosporin or an anti-pseudomonal penicillin)
 - C. Severe enterococcal infection (combined with ampicillin)
 - D. Initial or definitive therapy for suspected/proven gram-negative rod infections with multiple organisms (especially if *Serratia sp.*, *Enterobacter sp.*, and *Pseudomonas aeruginosa*)
 - E. Mixed surgical infections (usually combined with other drugs for appropriate coverage of gram-positive and anaerobic organisms)
 - F. Antibiotic-impregnated PMMA beads
 - G. Surgical irrigation solution (although this usage can be debated)

CLINICAL NOTE: In situations where organisms are known to be sensitive to a cephalosporin, strong consideration should be given to utilizing one of those drugs (e.g., ceftazidime). This is particularly true in individuals with known renal impairment.

- III. MAIN PROPERTIES/ADVANTAGES
 - A. Bactericidal
 - B. Good half-life (approximately 2 hours)
 - C. Good tissue distribution and penetration

- D. Negligible protein binding
- E. Primarily renal excretion
- F. Thermostabile
- IV. DISADVANTAGES
 - A. Potential risk for severe toxicity
 - 1. Renal failure
 - 2. Vestibular/cochlear damage
 - B. Limited to parenteral (IV/IM) use only
 - C. No activity against anaerobes
- V. ADVERSE EFFECTS
 - A. Vestibular toxicity
 - B. Auditory toxicity
 - C. Renal toxicity
 - 1. Gentamicin probably more so than tobramycin
 - 2. Amikacin probably less than gentamicin and tobramycin
 - D. Potential neuromuscular blockade (when used with general anesthesia)
 - E. Skin rash
 - F. Drug-induced fever
- VI. PREDISPOSING FACTORS FOR
 - NEPHROTOXICITY
 - A. Advanced age
 - B. Pre-existing renal disease
 - C. Previous administration of aminoglycosides
 - D. Prolonged administration of aminoglycosides
 - E. Low blood volume
 - F. Septicemia
 - G. Concurrent nephrotoxic drug usage
 - H. Concurrent loop diuretics used (especially in older patients)
 - I. Concurrent high dose cephalosporins
 - J. High "trough" value is more important than high "peak" value for monitoring
- VII. PREDISPOSING FACTORS FOR
 - OTOTOXICITY
 - A. Advanced age
 - B. Pre-existing hearing loss
 - C. Previous administration of aminoglycosides
 - D. Prolonged administration of aminoglycosides

- E. Pre-existing renal impairment
- F. Concurrent ototoxic drug usage
- G. Renal dialysis patients
- H. High "trough" value is more important than high "peak" value for monitoring, although ototoxicity is less dependent on serum concentration than nephrotoxicity
- VIII. GUIDELINES FOR CLINICAL USAGE AND MONITORING
 - A. Peak and trough values are critical
 - 1. Begin with second or third dose
 - 2. Used as indicator for modification of dosage or administration time interval
 - Gentamicin and tobramycin

 Peak value: 6-10 ug/ml
 Trough value: less than 2 ug/ml
 - 4. Amikacin
 - a. Peak value: 18-30 ug/ml
 - b. Trough value: less than 10 ug/ml
 - "Peak" values/levels

 a. 15-30 minutes after IV infusion
 - b. 60 minutes after IM injection
 - 6. "Trough" values/levels
 - a. Should be drawn just prior to administration of next dose
 - B. Serum creatinine
 - 1. Order before therapy then roughly every other day
 - 2. 0.4 mg/dl change indicates likely renal impairment
 - C. Serum blood urea nitrogen (BUN)
 - 1. Secondary test
 - 2. Less specific for renal function than creatinine
 - D. Urinalysis
 - 1. Order before therapy than everyday or every other day
 - 2. Change in specific gravity most important
 - 3. Proteinuria
 - 4. Casts
 - 5. Lab variability and lack of specificity make this test generally less valuable than creatinine
 - E. Audiometry
 - 1. If available
 - 2. Baseline should be obtained prior to therapy if monitoring is to be employed

IX. DOSAGE SCHEDULE

A. Gentamicin and tobramycin

- 1. Loading dose: 1-2 mg/kg
- 2. Maintenance dose: 3-5 mg/kg/day at 8 to 24 hour intervals
- B. Amikacin
 - 1. Loading dose: 5.0-7.5 mg/kg
 - 2. Maintenance dose: 15 mg/kg/day at 8 to 24 hour intervals
- C. Adjust maintenance dose based upon creatinine clearance
 - (140 age) x weight (in kg)
 - 1. Creatinine clearance = serum creatinine x 72
 - a. Use "lean" body weight
 - b. In women multiply above result by 0.85
 - c. "Normal" creatinine clearance is around 100 ml/min or greater
 - 2. May also estimate the creatinine clearance with a dosing nomogram
 - 3. If the creatinine clearance is less than 100, maintenance dose should be a calculated as above divided by 100 and multiplied by the creatinine clearance (e.g., if the creatinine clearance is 50 ml/min, 50% of the standard maintenance dose would be given)
- X. DOSAGE ADJUSTMENTS
 - A. Based on "peak" and "trough" levels
 - B. Increased "peak", normal "trough" = decrease amount of aminoglycoside
 - C. Decreased "peak", normal "trough" = increase amount of aminoglycoside
 - D. Normal "peak", increased "trough" = increase dosage interval
 - E. Increased "peak", increased "trough" = decrease amount of aminoglycoside and increase dosage interval
 - F. Decrease amount of aminoglycoside
 - 1. Difficult to determine quantity of change
 - 2. Requires more frequent peak and trough values to assess effectiveness
 - G. Increase dosage interval
 - 1. Determine serum creatinine value
 - Multiply serum creatinine value by 8 (e.g., if serum creatinine is 1.5 mg/dl, then 1.5 x 8 = 12.0. Therefore, dose is administered at 12 hour intervals)
 - 3. Commonly employed and easy to structure and monitor