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INTRODUCTION

The assumption for the sake of this manuscript is that the
reader has an interest in and understands the importance
statistics are currently playing in our podiatric medical
practice. This will only increase in the future. There is
already more attention being paid to quality and value of
clinical research. In addition efforts are already underway to
measure our outcomes and prove that the care we provide is
financially responsible and clinically meaningful. This new
understanding will significantly impact, change and improve
how we practice our profession. All parties involved, especially
our patients, will benefit. An entire manuscript could be
dedicated to this premise alone.

This manuscript is based primarily and almost entirely on
a text Primer of Biostatistics, Fifth Edition, by Stanton A.
Glantz, Ph.D. The book is well written and intended to be
read by medical professionals and researchers. This manuscript
for the sake of brevity hits on the salient points without the
examples and much of the prose found in the text. The intent
is to provide the reader with quick reference when reviewing
journal articles or about to embark in study of their own.
Certainly a more thorough explanation of the principles of
statistics can be found in the Primer of Biostatistics. My
recommendation would be to either purchase the fifth
edition or wait for the seventh edition. The latter is likely to
be released by the time you read this manuscript. This
does not cover all the topics in the text, but provides an
introduction to some of the statistical methods contained
therein that should start someone on their journey to
understanding statistics.

PART 1: CHARACTERIZING DATA

Normal Distribution
Part I will focus on ordinal data (data with ranking such as
numbers) that comply with the normal distribution since this
includes most of the studies and data we will be exposed to.
What is the normal distribution? The normal or Gaussian

distribution is what we learned in grade school when
teachers graded our papers as the bell curve. The normal
distribution occurs whenever the measurement is the result
of small independent random factors. An individual
measurement in the normal distribution is more likely to fall
near the mean (or average) than far away from it and equally
likely to be above or below the mean. If the data are not
likely to follow these criteria then the normal distribution
does not apply. This could occur if the students got the
answers to the test and most scored at or near 100 since the
data would be skewed and the scores cannot be above 100.

Mean and Standard Deviation
Whenever the measurements meet the criteria of the
normal distribution two parameters can fully describe the
data. They are the mean and the standard deviation. The
mean is simply the average of the data.

Where µ is the mean, ƩX is the arithmetic sum of the
individual measurements and N is the total number of
measurements.

The second parameter, the standard deviation, describes
how the data varies about the mean. To define the variability
of the data we calculate how far away from the mean each
measurement is by subtracting the mean from each value.
We square this value since, if a measurement is below the
mean, it results in a negative value. This is called the
population variance.

Population variance = sum of (measurement of
one member – mean)2 / number of members

The equivalent mathematical expression is:
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Since the units of the population variance are squared (i.e.
cm2 in the case of length measurements) we take the square
root of the population variance to arrive at the standard
deviation. Mathematically this is expressed as:

So now we have two parameters the mean and the standard
deviation that define the data assuming the data follow the
normal distribution.

Other characteristics of the normal distribution are
that roughly 68 percent of the measurements fall within
one standard deviation and about 95 percent fall within
two standard deviations.

Sample Mean and Standard Deviation
Now, in most studies it is impossible to measure all the
subjects so we sample some of the population. If we measure
only a subset of the population with n measurements of a
possible total N we call this the sample mean denoted as
and defined mathematically as:

The sample standard deviation is denoted as s (or SD) in
the following equation:

The difference between the sample mean and standard
deviation and the population mean and standard deviation is
that we are substituting the entire population mean µ with
the sample mean and in calculating the sample standard
deviation we are dividing by n -1 instead of n. The reason for
the latter is that the sample will never show as much
variability as the entire population. By dividing by a value
less than n (i.e. n -1) we are increasing the standard
deviation so we do not underestimate it.

Standard Error of the Mean
and s are derived from a sample of n of the entire

population N. How close are the sample mean and the
standard deviation of the sample to actual mean and
standard deviation to the underlying population? We
introduce an additional parameter to help with this called
the standard error of the mean. This statistic measures how
close the sample mean is to the underlying entire population
mean. We take say 50 samples of size n of N and calculate
(here’s where it gets tricky) the mean of the 50 sample means

( ) and the standard deviation of the sample means ( ).
The mean of the sample means will be equal to the mean
µ of the entire population. However, the standard
deviation of the sample means does not equal the standard
deviation of the underlying population. It is a measure of
the variability of the means not the underlying population.
The means themselves cancel out much of the underlying
variability of the population so this value will always be
smaller than the standard deviation of the population. This
value is called the standard error of the mean. The true
standard error of the mean ( ) is defined as:

where σ is the population standard deviation and n is the
sample size.

The best estimate of the standard error of the mean,
s x, from one single sample is:

Central Limit Theorem
One interesting characteristic of the distribution of the
sample means is that it will follow the normal distribution
(or bell curve) even if the underlying population data does
not. The standard error of the mean will be larger for larger
variability of the underlying population as noted by the
standard deviation. This value will be smaller for a larger
sample size as shown in the last equation above. This and
the characteristics of the sample means and standard error
of the means has led to the central limit theorem.

• The distribution of samplemeanswill be approximately
normal regardless of the distribution of the values
in the original population from which the samples
were drawn.

• The mean value of the collection of all possible sample
means will equal the mean of the original population.

• The standard deviation of the collection of all possible
means of samples of a given size, called the standard
error of the mean, depends on both the standard
deviation of the original population and the size of
the sample.

One note is to be careful when authors report their data they
often substitute the standard error of the mean in place of
the standard deviation when describing their data since the
former will be smaller. This, however, fools the reader to
believing there is less variability of the population data and
is a serious error.
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PART II: TESTING FOR THE
DIFFERENCE BETWEEN GROUPS

Tests of significance are how we determine whether a
treatment has an effect on the underlying population. We
first assume that there is no significant difference due to the
treatment or treatments and call it the null hypothesis. The
tests used to determine whether to accept or reject the null
hypothesis are collectively called analysis of variance. How
do we do this?

We estimate the variance in two ways. First we calculate
the average variance for all the groups and call it the within
groups variance. We have eliminated the treatment effects.

The within groups variance is based on the mean for
that sample and therefore is independent of and will not be
affected by any of the treatments.

Next we calculate the estimate of the underlying
population variance. Remember that we decided to test the
null hypothesis that there is no difference between any
treatment groups so this implies that all the samples are from
the same underlying population. So the standard deviation
of the sample means of the different groups will approximate
the standard error of the means. From the equation we used
to calculate the standard error of the means, :

We square the equation multiply by n to solve for s2 (now
noted as ) which will be the estimate of the population
variation based on the sample means or the between
group variance.

is the standard deviation of the same sample means i.e.
the standard error the means.

The F test statistic
If the groups are from the same underlying population and
the treatment has no effect then both estimates of variance
from within and between the groups should be about the
same value. We create the F test statistic.

If there is no difference between the groups this
value should be close to 1. However, if F is a large number

then there is more variance between the groups than
within the groups and therefore we can reject the null
hypothesis. There is indeed a difference between the
groups and therefore the samples were not drawn from the
same population, (ie, one of the groups is different due to
the treatment effect).

The P value
The value of the F test statistic will depend on which
individuals in the underlying population are tested. If we
were to repeat this experiment 100 times when there is no
difference between the groups most of the values of F will be
close to 1 but some will be greater than 1. We want to
calculate the value of F for which there is only a 5% chance
that we reject the null hypothesis when indeed the null
hypothesis is true. This value of F is determined to be a “big
F” and we report that the P <0.05 (for 5%). It is possible,
with sheer bad luck, to reject the null hypothesis 5% of the
time at that level of F

The critical value of F must not be based on only 100
experiments but all possible experiments. There are typically
an infinite number of experiments that can be performed
due to the large size of the underlying population.
So mathematicians have created tables for critical values of F
that correspond to p <0.05 and p < 0.01.

To create these tables there are four underlying
assumptions:

• All the samples are independent of each other.
• Each sample must be randomly selected from the

underlying population.
• The populations from which the samples are drawn

must have a normal distribution
• The variances of each population must be equal,

even when the means are different, i.e, when the
treatment has an effect.

Degrees of Freedom and F tables
The value of F depends on the size of the sample and
number of samples that are under question. So does the F
value at which P < 0.05. So the equations used to develop the
F tables are dependent on two parameters known as the
degree-of-freedom parameters denoted as . The numerator
or between groups degrees of freedom from the F statistic is

The within groups or denominator degrees of freedom:

M is the number of samples and n is the sample size.
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The degrees of freedom are simply the way the number
of samples and the sample size enter into the mathematical
formulas used to calculate the statistical tables of critical
values of F.

The t tests – special case of two groups
The analysis of variance may include more than two groups
and only states whether there is a difference between any of
the groups, but not which groups are significantly different
from each other. The t test is the most often used statistic in
the medical literature and is often inappropriately used to
compare multiple groups which we discuss further. When
the t test is used to test multiple groups it increases the
likelihood of erroneously rejecting the null hypothesis
when it is indeed true. This effectively increases the chances
of reporting that some intervention or treatment had an
effect when it did not.

When this ratio is small there is no difference. When the ratio
or t is big we will reject the null hypothesis and assert that the
treatment had an effect. This is the same logic used in the
analysis of variance. In both cases we are comparing the
differences in magnitude of the means with the variability
that would be expected within the samples.

But since we assume that the two samples were drawn from
the same population the variances and are both
estimates of the population variance. Therefore, we average
the two and call it the pooled-variance estimate:

The t-test statistic based on the pooled-variance estimate is
therefore:

As with the F statistic there are a range of values for t
dependent on which members of the population are tested.
As with F, if the t value is big (either positive or negative),
the null hypothesis will be rejected and the treatment will
have had an effect. In the case of the t test it has two tails
since we are subtracting the means and can have both
negative and positive values. When there is no difference the
t statistic approaches zero. Again the t values for P <0.05 and
P <0.01 have been tabulated. As with the F statistic the

sample size enters into the mathematical tables as degrees of
freedom = 2(n-1) where n is the sample size. As the n
increases it becomes easier to detect smaller differences
between the groups. As it turns out the t test is a special case
of analysis of variance where F = t2 and there are two groups.
Suffice it to say that this can be proven mathematically.

Post – hoc analysis
When there are more than two groups, we first perform the
analysis of variance using the F statistic. Then if the data
shows a significant difference we conduct post-hoc analyses
also called multiple-comparison procedures to determine
which groups defer significantly from each other. As
previously asserted many authors simply perform multiple
t tests between all the groups. Recall that we assume t
statistic at the p <0.05 assumes that we are willing to accept
a 5 percent chance (or one in 20) that we report a
difference when one does not exist. If we repeat this process
comparing group A with group B and then group B with C
and then group A and C and so on we increase the chance
that we will state that there is a difference when one does
not exist. So for every comparison we make we add an
additional 5 percent chance of erroneously reporting a
difference when one does not exist. So for example with five
groups of data there would be 10 possible pair wise
comparisons or a 50% chance of stating that there is
difference when there is not.

The Bonferroni t test
The Bonferroni t test is a simple arithmetic modification of
the t test that takes into account the increase likelihood of
reporting a difference when making more than one
comparison. Instead of taking the value of t at p <0.05 you
divide that by the number of comparisons to be made. In
the case of three comparisons take the 0.05/3 for the 1.6
percent chance of reporting a difference when it does not
exist. This works well until there are about 10 comparisons
at which this becomes overly conservative.

Holm t test
Another more powerful post hoc analysis based on the
Bonferroni concept is the Holm t test. It is a step down
procedure. Here the divide p value sequentially for the given
number of tests in the case of three pair wise comparisons
0.05/3 = 0.0167; 0.05 /2 = 0.025; 0.05. Then based on
the degrees of freedom, the t statistic for each value of p is
determined and compared to the calculated values starting
for the largest difference (smallest p value and largest
t value). If the null hypothesis is rejected (there is a significant
difference) then the next comparison is made otherwise
all following stepwise comparisons are assumed to be
consistent with the null hypothesis (not significant).
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Student Newman Keuls test
(SNK or Newman Keuls test)
There is another mathematical model and statistical post hoc
analysis, the Student Newman Keuls test with a corresponding
table for its q statistic. This model gives a more realistic
estimate of the true likelihood of making the error of stating
there is a difference when there is not. The first step is still to
perform the analysis of variance. Then calculate the q statistic
as follows:

Here and are the means being compared, is the
variance within the treatment groups as calculated for the
analysis of variance and nA and nB are the sample sizes. The
degrees of freedom is the denominator degrees of
freedom again from the analysis of variance. The table is
listed by degrees of freedom for each value of the total
accepted risk for falsely rejecting the null hypothesis usually
p < 0.05 or 0.01. The means are listed in order from
smallest to largest. The first step is to compare the largest to
the smallest mean. Then compare the largest with the second
smallest until the largest is compared to the second largest.
Then repeat the same for the second largest until all
comparisons are made. In these tables there is a p value
needed to determine the q value. The p is the number of
means in the comparison. For example if there are four
means then the value of p for the q statistic is the number of
means in the comparison will be four when comparing the
fourth to the first. Comparing the third to the first is p of 3
and so on. If no significant difference exists between two
means then assume none exists within the remaining means.

The Tukey test
The SNK was derived from the Tukey Test and is computed
identically to the former with one exception. In the SNK test
we used different P’s representing the number of means
included within the comparison being made to arrive at a
different q value. So for the SNK we have different critical
values for q for each comparison. With the Tukey test the P
value is set to m, the number of means or groups in the
study. So there is only one P value. (Do not confuse this P
with the P [probability] value for acceptable error). Between
the Tukey and the SNK the Tukey will be more conservative
and less likely to reject the null hypothesis. The SNK
proponents feel that since analysis of variance is done first it
controls for overall error rate.

Which post-hoc test to perform?
Unadjusted t tests are also known as Fisher’s protected Least
Significant Difference Test yield too many errors and the
Bonferonni is at the opposite end and too conservative. Dr.
Glantz prefers the SNK over the Tukey but relates that it is
somewhat liberal in detecting differences. Ultimately he
recommends the Holm test as the best compromise since it
is less conservative than Tukey or Bonferonni, while at the
same time controlling for overall risk of false-positive tests at
the pairwise level. The important thing is to understand the
difference between the tests and how they are performed.

PART III: POWER
What does “not statistically significant” mean
When researchers make statistical comparisons of data and
find a statically significant difference between treatment
groups they declare as such. However, they often make the
wrong assumption that if there was no difference found
that there was no statistically significant difference. Not
necessarily. They just failed to prove that there was a
difference, but the treatment may still have an effect. As a
critical reader we need to ask whether the test performed
was robust enough to detect a difference if it existed. This
relates to the power of the study.

Type I and Type II errors
There are two types of errors. Type I errors or false positives
occur when we state there is a significant difference and there
is not. Type II errors or false negatives occur when we state
that there is no difference when there is one. The commonly
accepted value for a big statistic where we are comfortable
declaring that there is a difference is 0.05 and this is denoted
by α = 0.05. This is our minimum p value. Type I errors
occur when one rejects the null hypothesis and it is true.
The risk of having a Type I error is expressed by α in most
cases 0.05 or 5 percent.

The probability of a Type II error where we accept the
null hypothesis and it is false or a false negative is denoted by
the Greek symbol ß. Here there is a treatment effect and we
fail to find it. The power of the test is the probability of
finding a difference when it exists or true positive and is
relative to the Type II error probability by 1 – ß (Table 1).

What affects our risk of type II errors of stating that
there is no difference when one exists? Or otherwise stated
what variables affect power and are there things we can do
to improve it? The size of the treatment effect plays a role.
The larger the effect of the treatment the easier it is to
detect. So one thing we need to do is determine how small
an effect that is worth detecting. This can be subjective.
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ratio to help characterize the treatment effect and variance
as a ratio:

Bigger sample size equals more power
Investigators have no control over the size of the treatment
effect or population variability and the probability to
determine there is a significant difference has historically
been α = 0.05. There is one additional variable that
investigators will be able to control and that is the sample
size. This will increase power for two reasons.

Increasing the sample size increases the number of
degrees of freedom which in turn decreases the value of the
t statistic that will result in a significant difference. Secondly
as the sample size increases this will result in higher t values
overall when comparing to the distribution for no effect.

Although t tests were used to explain power, the
principles apply to all statistics including analysis of variance.
The exact method for calculating power is dependent on
the test and its mathematical model.

Summary of power
The power of a test tells us the likelihood that the hypothe-
sis of no treatment effect will be rejected when the treatment
has an effect.

The more stringent we are with our requirement for
detecting a difference, the less power of the experiment.

The smaller the size of the treatment effect when
compared to the population variation the lower the power.

Larger sample sizes result in more power.
The exact procedure to measure power is dependent

on the test in question and its underlying mathematical
model. We typically aim for power of approximately 80%
for an acceptable level. If an author reports no statistically
significate difference, he or she should provide a power
analysis. Otherwise we need to be careful, if not
skeptical, of the ability of the experimental design to find
a difference.

Table 1.

TYPE 1 AND TYPE 2 ERRORS

ACTUAL SITUATION
Conclude from observations Treatment has an effect Treatment has not effect

Treatment has an effect True positive False positive
Correct conclusion Type I error

1 - ß α
Treatment has no effect False negative True negative

Type II error Correct conclusion
ß 1 - α

Type I and II errors are related. The harder or more
stringent we are in making the test to prove there is an effect
or make ß smaller, the more likely we are of missing a true
effect or make ß bigger or the power (1 – ß) smaller. There
is only one way to improve on both simultaneously and that
is to increase the sample size or number of subjects.

The variables that play an important role in the power
of a test are the underlying variability in the population,
the size of the treatment effect, what probability you will
accept for a significant result, and number of subjects.

The size of the Type I Error α
Requiring that there be stronger evidence before reporting a
significant difference we are effectively changing the α value
to a smaller value. This has the effect of pushing out the point
at which we will state there is a significant difference further
out of the bell curve distribution. The power of the test lies
in the points that are outside of that previous α value.
Increasing αwe are making more of the points lie within the
bell curve and decrease the power.

The size of the treatment effect
The larger the effect of the treatment the further apart the
two bell curves that represent the two groups will be. Since
the power can be represented by the data that lies outside
the overlapping of the two curves the power again is in-
creased with larger treatment effect.

The population variability
The more variability within each group the wider the bell
curve for each group. For a given treatment this increase in
the width of the bell curve will again increase the amount
each of the distributions will overlap and decrease the power.

It is common to combine the size of the treatment
effect and the population variability into a ratio called
the noncentrality parameter and using this dimensionless
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PART IV: EACH SUBJECT
RECEIVES THE TREATMENT(S)

When each group in study contains different subjects the
largest source of variability is the variability between each
subject. If the study can be designed where each subject
receives the treatment or treatments then we can significantly
reduce the population variability. Each subject will in effect
serve as the control for the treatment. This helps to isolate the
effect of treatment from the variability among subjects.

Paired t test: one subject before and after one
treatment
In experiments when the subject can be observed before and
after a treatment, we can eliminate the variability between
subjects by measuring the change the treatment introduces
within each subject. Remember that for t

The parameter we are going to address is the change in
each individual due to the treatment or . We let d equal
each individual change and is the mean change. So the
standard error of the difference is

So the standard error of the difference is

And then

Since we want to test the hypothesis that there is no change
with treatment = 0 for no change with the treatment.

This value of t is then compared to the critical value of
t where the degrees of freedom is defined by the equation:
v = n – 1.

The t test like all the tests we have discussed require
a normally distributed population and in this case we are
referring to the changes due to the treatment effect have to
be normally distributed.

To summarize for the paired t test
Compute the change in response the occurs for each

individual d.
Compute the mean change and the standard error

of the mean changes .
Compute t by dividing the former by the latter = .
Compare this t with the critical value for v = n – 1

degrees of freedom where n is the number of subjects.

Repeated measures analysis of variance
When each subject undergoes more than one treatment we
have a parallel situation to analysis variance. Except again
each subject behaves as a control and we have eliminated a
significant source of variability which is the between subject
variability. In this model we will be left with within subjects
variations. Not all subjects will respond the same to the
treatment. So within subject variation will be divided into
two sources the variation due to the treatment and the
residual variation (since each subject is likely to have some
variability in response to a particular treatment).

There is a detailed mathematical treatise on the
development of the of repeated measures analysis of variation
in Chapter 9 of the text Primer of Biostatistics, Fifth Edition.
For our purposes we will show the logic and skip the more
rigorous mathematical development of the equations.

The total sum of the squares equals the sum of the
sum of the squares for within the treatment groups and
between the treatment groups.

We can further divide the within group sum of the
squares into the effect of the treatment and residual
variation of the subject to the treatment.

So we can solve for

The same can be done for the degrees of freedom

Now statisticians throw us a curve ball and call the SS/DF
the mean square and label it the MS. This is not a mean in
the mathematical sense of the word but is really an estimate
of the variance. Hence:

So here

And we use the DFtreat numerator degrees of freedom and the
DFres for the F statistic tables. This is analogous to the F
statistic for the analysis of variance. For analysis of variance we
used the variance within each group in the numerator and the
variance between the groups using the means for the groups.
Here we have eliminated the between subjects variability since
each subject serves as its own control. The numerator
represents the variance due to the treatment and
denominator is the residual variance. If this is from the same
population i.e. there is no treatment affect the F will be small
or closer to one. As the treatment introduces more variance
the F will be large just as in the analysis of variance.


