
IntroductIon

Xenografts, tissue derived from animals, have been used for
replacement or augmentation in human surgery for several
decades. In fact, their use first appeared in the European
literature as early as 1881. Tissues of bovine, porcine, and
equine origin, as well as allografts, have been implanted to
repair or reconstruct heart valves, ventricular septal defects,
damaged tendons, ruptured ligaments, and skin deficits.
They have also been utilized as dural substitutes to protect
the brain.

These graft tissues function as collagen scaffolds (Table
1) so the host can rebuild the structures that are damaged or
absent (1). Since these xenografts are dramatically foreign to
the human host, one of the main problems with their
implantation is the immunogenic reactions that they
stimulate. This is largely thought to be due to the cellular
components, glycoproteins, and proteoglycans that make up
the matrix of these animal tissues. The result of this host
reaction and inflammatory infiltration is a weakening of the
repair, particularly the graft-host junction, increasing
the possibility of failure due to rupture, rejection or
inflammatory breakdown (2).

Normally, there is an anticipated loss in strength and
mass at the graft interface during the initial phases of
remodeling (3) (Table 2). This is largely due to the initial
process of organized removal and digestion, mediated by a
number of different proteolytic enzymes belonging to the

metalloproteinase family (4-7). This digestive activity can be
prolonged or magnified by the immunogenic response,
reaction to toxic chemical stabilizers such as gluteraldehyde,
or by the sterilization process especially when ethylene oxide
is used to avoid the degradative effects of heat sterilization.
The result is an accelerated degradation of the implanted
collagen scaffold that can result in scar formation and
suboptimal repairs (8).

the Ideal Xenograft

Ideally, then, the need is for a bioimplant that can resist
reactive breakdown and maintain strength against expected
anatomic forces in this histologic environment as the repair
process matures (9). The ideal graft should also be relatively
easy to store, prepare and use (10). Equine pericardium,
processed with proprietary technologies, appears to fulfill
these prerequisites (OrthADAPT; Synovis Orthopedic and
Wound Care, Inc. Irvine, CA). The tissue itself is naturally
clean with minimal fatty deposits and intrinsically strong for
holding sutures and resisting applied forces during healing.
It is composed of highly organized collagen, mostly Type I,
and has over 20 years of history as being utilized successfully
in cardiac and neurosurgery (Figure 1).

The three-step patented processes begin with
decellularization followed by a stabilization technique
involving the creation of flexible collagen cross-linking
through the use of nontoxic chemicals. Step three, the
sterilization, is achieved with a nondestructive liquid
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Table 1. Available Tissue Graft Products. Table 2. Degradation of Collagen Implants. (from Weiler A, Hoffmann
RFG, Stahelin AC, et al. Biodegradable implants in sports medicine: The
biomechanical base. J Arthro Rel Surgery 2002;16:305-21).

table 1

table 2
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Figure 1A. Architecture comparison of
biologic tissue grafts. Dermis.

Figure 1B. Tendon.

Figure 1C. Pericardium.

Figure 2. Comparing stability of biologic implants.

chemical technology. The result is a strong, reinforced, and
pliable collagen matrix that supports cellular ingrowth and
resists premature degradation (Figure 2).

The bioimplant, which is safe and nontoxic, now has the
capability to become incorporated into the native tissue with
minimal reaction, allowing for a stronger repair over time.
The graft itself remains strong for retaining suture until the
healing has provided adequate strength to allow early
function. It is thin, pliable, has good tensile strength, and
does not tend to calcify during healing (11,12). The fact that
it can be stored at room temperature and has a three-year
shelf life as well as minimal time needed for preparation make
this bioimplant economically attractive.



Its ability to maintain strength during the healing
process of this biocompatible equine xenograft is superior to
that of both autografts and allografts (Figure 3). These grafts
degrade and weaken over the first three weeks and then
gradually strengthen gaining about 50% of their initial
strength at 30 weeks (13-17). OrthADAPT has little loss of
strength during the first 18-24 hours of enzyme exposure
(Figure 4) (18).

It has been hypothesized that a collagen-based scaffold
used to reinforce a tendon repair should possess similar
viscoelastic behavior as a normal tendon in order to provide
the same function (19). The OrthADAPT bioimplant may
be more functionally suitable for the reinforcement of
tendon repair since its viscoelastic load-elongation behavior
more closely resembles that of human tendon (20-23).

aPPlIcatIons

Biocompatibility means that there is very little reactive
inflammatory cell infiltrate about the graft-host interface,
allowing for early fibroblast ingrowth especially over
the first two weeks, as well as early revascularization. This
speeds the healing process towards a strong repair for

damaged tendons and ligaments, including interpositional
replacement (Figure 5).

Uses for this specially-processed equine xenograft
include: Achilles tendon repair (Figure 6), posterior tibialis
tendonitis reconstruction (Figure 7), peroneal tendon
augmentation and repair (Figure 8) as well as reparation of
damaged or ruptured structures such as extensor tendons
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Figure 3. Revascularization/remodeling of autografts-allografts. Figure 4. Comparing strength of biologic implants.

Figure 5. Biocompatibility of OrthADAPT implant. Animal study shows
minimal inflammatory cell, surrounding bioimplant with evidence of fi-
broblast ingrowth at two weeks.

Figure 6A. Achilles tendon augmentation.

Figure 6B. Achilles tendon augmentation.
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Figure 7A. Posterior tibial tendon repair. Figure 7B. Posterior tibial tendon repair.

Figure 8. Peroneus brevis repair.

Figure 10. Modified Chrisman and Snook ankle stabilization with
Xenograft.

Figure 9A. Modified Brostrom graft stabilization.

Figure 9B. Modified Brostrom graft stabilization.



and others. For ligament reconstruction in the foot/ankle
one of the more attractive applications is the lateral ankle
stabilization procedures such as the Brostrom (Figure 9)
or modified Chrisman and Snook (Figure 10). Finally
some off-label uses include plantar fascia repairs and inter-
positional arthrografts.

conclusIon

Desirable characteristics such as biocompatibility, thinness,
strength, pliability, stability, and the ability to resist rapid
degradation make this patently-processed equine pericardial
xenograft ideal for a variety of soft tissue repairs and
augmentaions, particularly tendons and ligaments (Figure
11). Other uses remain to be identified and evidence tested.
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Figure 11A. OrthADAPT pericardial Xenograft.

Figure 11B. OrthADAPT pericardial Xenograft.


